9 September 2021

UK Fusion Materials Roadmap aims to accelerate progress for power

The UK Atomic Energy Authority (UKAEA) and The Henry Royce Institute for advanced materials (Royce) have published a roadmap for developing materials for fusion energy.

Visualisation of the UK’s STEP prototype fusion power plant

© UK Atomic Energy Authority

The roadmap, developed with the input of over a hundred materials experts from the UK research community and industry, highlights five major areas of work required to enable the materials for future fusion power plants.

Identifying, developing and qualifying the right materials is key to delivering commercial fusion for two reasons. First, plant efficiencies, safety and availability often hinge on the quality of the component materials.

Second, a sustainable fuel cycle requires highly productive fuel breeding materials. Both plant components and fuel breeder materials will need to withstand a highly challenging combination of neutron bombardment and thermal, magnetic, electric and mechanical loads in a tokamak power plant.

The five priority areas identified by the UK Fusion Materials Roadmap are:

  • Novel materials to minimise the amount of activation in the structure of the fusion power plant.
  • Compounds that can be used within the power plant to optimise breeding of tritium fuel to sustain the fusion process.
  • Magnets and insulators that are resistant to irradiation from fusion reactions – especially under cryogenic conditions.
  • Structural materials able to retain their strength under neutron bombardment at high operating temperatures (over 550°C).
  • Engineering assurance for fusion materials – providing irradiated sample data and modelled predictions such that plant designers, operators and regulators have confidence that materials are suitable for use in future commercial power stations.

‘This roadmap is a national tool that aims to give UK materials researchers common themes to collaborate around. We hope to generate momentum in the testing, mechanistic understanding, and surmounting of, irradiation damage from fusion,’ says Dr Amanda Quadling, Director of Materials at UKAEA.

‘The roadmap is also a teaching document for those who wish to learn more about fusion materials from a supply chain and regulatory point of view.

‘It will help to form new partnerships across a wide range of materials stakeholders so we can bring fusion electricity to the world as quickly as possible.’

Professor David Knowles, CEO, Henry Royce Institute, adds, ‘The technological challenges of delivering fusion energy into practical application demand the development of materials which can withstand the extremely severe operational conditions of fusion power plants.

‘We now need to pursue, as a matter of urgency, the development of novel materials which engineers can use to reliably withstand fusion plants demanding environments such high temperatures, severe irradiation, rapid thermal cycling gradients.

‘This important materials roadmap published by Royce and UKAEA sets out what we need to do to ensure we can deliver on one of the most challenging technological missions we have ever faced – the controlled exploitation of fusion using a tokamak technology has the potential to deliver low-carbon fuel abundance to the benefit for millennia to come.’

 

Related topics