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HEART VALVE DISEASE

• Valvular heart disease (VHD) affects over 100 million people globally

• Aortic valve disease is the most prevalent VHD 

• Types:       - Stenosis: heart valve does not open fully

- Regurgitation: heart valve does not close fully

• Causes:    - Congenital conditions

- Degenerative conditions

- Rheumatic fever related

Source: https://patientdecisionaid.org/aortic-stenosis/

Clinical treatment: Heart valve replacement surgery  500,000 a year, 
a figure expected to double in the next 50 years
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CURRENT HEART VALVE PROSTHESIS

Mechanical replacements 

• Hard, man-made materials

 Long-term durability (~20 years)

 Requires patient to take life-long 

anticoagulants

Biological replacements

• Porcine or bovine tissue leaflets

 Biocompatibility

 Lower durability (10-15 years), 

leading to repeat operation  

Research aim: To meet the need for a prosthesis that is suitable for all patients
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POLYMER HEART VALVES
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Materials used in different attempts to design a PHV:

A potential solution: A flexible leaflet polymer heart valve (PHV) that mimics the 

hemodynamic performance of the native heart valve

- Foldax, Tria heart valve, 
Source: https://foldax.com 

Polyurethanes 

Silicone

Polytetrafluoroethylene
(PTFE)

Polyesters (e.g. PET)

Styrenic thermoplastic 
elastomers

- MM Rozeik et al. The aortic valve: structure, complications and implications for 
transcatheter aortic valve replacement, 2014.



POLYMER HEART VALVES
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Opportunities:

• Cheaper and easier to manufacture

• Potential for no anticoagulation therapy

Limitations so far: 

• Mechanical failure (tearing of leaflets)

• Calcification

How can durability be 

improved?



POLIVALVE

Surgical PoliValve – An entirely injection moulded polymer heart valve made from styrenic 

thermoplastic elastomers, designed and developed by the Structured Materials group
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STYRENIC THERMOPLASTIC ELASTOMERS

• PoliValve is made of thermoplastic elastomers 
(SEBS grades)

• These are block copolymers which phase 
separate

• Styrene blocks forms hard, crystalline phases

• Central blocks form soft, rubbery phases

Varying functional group, styrene content and 
molecular weight strongly affects material 

performance
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SEBS

SEPS

SIBS

Ethylene-Butylene

Ethylene-Propylene

Isobutylene



STYRENIC THERMOPLASTIC ELASTOMERS

Depending on styrene content and 
molecular weights, phase separation 
induces various morphologies: 

Spherical morphology 
 Isotropic properties

Cylindrical morphology 
 Anisotropic properties
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STYRENIC THERMOPLASTIC ELASTOMERS

Depending on styrene content and molecular 
weights, phase separation induces various 
morphologies:

PoliValve: Stent – Hard SEBS, Leaflets – SEBS 20
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Material Molecular 

weight (g/mol)

Morphology Styrene fraction 

(% wt.)

Soft SEBS High Spherical <20

Hard SEBS High Spherical <20

SEPS-22 71, 697 Cylindrical 19.2

SEBS-29 74, 837 Cylindrical 28.4

SEBS-20 111, 327 Cylindrical 19.6

SIBS-19 High Cylindrical 19.0
Table of styrenic block copolymers studied for PHV application.



STYRENIC THERMOPLASTIC ELASTOMERS
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• Mechanical properties measured in 
anisotropic styrenic thermoplastic 
elastomers vary based on cylinder 
orientation

• Anisotropy is flow induced during 
polymer processing

• For an oriented sheet of SEBS 20 
(leaflets) the Young’s modulus measured 
for parallel and perpendicular 
orientation follows a 2.3 : 1.0 ratio

E = 2.20 MPa 

E = 5.00 MPa 



MODELLING ANISOTROPY IN STYRENIC ELASTOMERS

• Computational modelling used to tailor anisotropy in the leaflet 

• Optimisation shows circumferential alignment of cylinders along the maximum stress direction

• Orientation achieved by having injection point at centre of leaflet

• Fatigue lifetime model under predicts durability in the PHV  needs further development

- M. Serrani et al., “A Computational Tool for the Microstructure Optimization of a Polymeric Heart Valve Prosthesis,” J. Biomech. Eng., vol. 138, no. 6, pp. 16–20, 2016.
- J. Brubert, “A novel polymeric prosthetic heart valve: design, manufacture, and testing,”, p. 296, 2015.
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MANUFACTURING PROTOTYPES

Injection moulding

- Fit moulds into machine and load polymer 

- Establish screw and mould temperatures

- Optimise holding pressure and cooling procedure 

- Inject polymer into mould, cool and remove part
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CNC machined inserts (left), female mould (centre), male mould (right).

Top view (A), side view (B) and bottom view (C) of injection moulded transcatheter PHV

MANUFACTURING PROTOTYPES

CNC Machining

- Program tool paths

- Set up tools and stock block

- Perform machining steps

Mold making considerations

- High quality finish

- Tolerances and undercuts

- Injection point position
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ANISOTROPY IN PHV LEAFLET
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Injection point

Alignment of cylinders in an injection moulded sample

- J. Stasiak et al, A bio-inspired microstructure induced by slow injection moulding of 

cylindrical block copolymers, 2014.

Injection point

Skin layer

Core layer

Skin layer

Small angle X-ray scattering images 

- J. Stasiak et al, Design, Development, Testing at ISO standards and in-vivo 

feasibility study of a novel Polymeric Heart Valve Prosthesis,” 2020.

Not to scale



SMALL ANGLE X-RAY SCATTERING

Cylindrical morphology 
- SEBS 20 (leaflet)
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Spherical morphology 
- Hard SEBS (stent)

Source: Synchrotron SAXS on beamline I22 at Diamond Light Source, Harwell, UK.



CALCIFICATION AND OXIDATION

Source: - Experiment and data collected by E. Okafor and J. Allford
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- Very low mass loss seen for SE/BS20 

and SEPS22

Significantly lower susceptibility to 

calcification than bovine pericardium

- J. Brubert, “A novel polymeric prosthetic heart valve: design, manufacture, and testing.”, 2015.

- More detailed studies on calcification and oxidation are in progress



POLIVALVE PERFORMANCE SUMMARY

• PHV injection moulded from two styrenic block 
copolymers

• Leaflets have tailored anisotropic properties 
that mimic the native heart valve

• Durability improved by adjusting injection 
point position, leaflet shape and adding filets 
around leaflets

• Latest prototype lasts > 1 billion cycles 
(~25 years) under accelerated fatigue testing

• Tested in vitro according to ISO 5840 standards 
and short term in vivo early feasibility study
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J. Stasiak et al, Design, Development, Testing at ISO standards and in-

vivo feasibility study of a novel Polymeric Heart Valve Prosthesis,” 2020.



• Styrenic thermoplastic elastomers are effective materials for flexible leaflet PHV’s that 

are durable and potentially biocompatible

• Flow induced anisotropy proves to be a useful tool to enhance durability in PHV leaflets

• Styrenic thermoplastic elastomers used in the Polivalve have demonstrated good 

mechanical performance and resistance to calcification

Future work:

Continue to improve durability by studying anisotropy in styrenic block copolymers

Run tests to further study material biocompatibility (e.g. oxidation, calcification, biostability). 

CONCLUSIONS & FUTURE WORK

19



20



HEAMOCOMPATIBILITY
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- J. Brubert, “A novel polymeric prosthetic heart valve: design, manufacture, and testing.”, 2015.

Thrombin is generated in the common pathway of 

the coagulation cascade as measured by the 

concentration of thrombin-antithrombin complex


