Geothermal Energy

Why do we need it?
Where do we get it?

Ashley Johnson
Geothermal Energy

- What is Geothermal Sourced Energy?
- Why Geothermal Power
- Drilling for Geothermal Power
- Research Challenges
 - Elastomers
 - Bits and Materials
- Conclusion
Geothermal sources and applications

Shallow Sources
- Shallow-borehole heat exchangers
- Heat extraction from ambient rock formation

Intermediate Sources
- Hydrothermal systems
- Water circulation through stimulated fractured rock

Deep Sources
- Hot dry rock

Application

<table>
<thead>
<tr>
<th></th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>District heating</td>
<td>Hot fluid <50 degC</td>
</tr>
<tr>
<td>Closed/open loop</td>
<td></td>
</tr>
<tr>
<td>Vertical borehole arrays or aquifer</td>
<td></td>
</tr>
<tr>
<td>– seasonal thermal storage</td>
<td></td>
</tr>
<tr>
<td>Solar influx or active recharge</td>
<td></td>
</tr>
<tr>
<td>Direct heating</td>
<td>Hot fluid <100 degC Soluble minerals</td>
</tr>
<tr>
<td>- domestic, industrial</td>
<td></td>
</tr>
<tr>
<td>Low grade heat</td>
<td></td>
</tr>
<tr>
<td>Produced water, abandoned wells</td>
<td></td>
</tr>
<tr>
<td>Power generation</td>
<td>Electricity Soluble minerals</td>
</tr>
<tr>
<td>- Direct steam</td>
<td></td>
</tr>
<tr>
<td>- Binary cycle</td>
<td></td>
</tr>
</tbody>
</table>

Why Geothermal Power

- Renewable Energy vs Reactive Power
- Inland Empire Energy Centre - Closure
- Effective Load Carrying Capacity
- Durable Base Load
 - Critical for Grid Stability
Geothermal Power – Heat to Electricity
Conductive Lode

- Identify the Conductive Path
- Penetrate the Lode
 - Granite – Challenging drilling
- Drill to Target
 - Break Rock (not tools)
 - Deliver Power
 - Steered Hole
- Map Permeability
 - Characterise formation
- Temperature 220 °C
Drilling – Cutting Rock

- Shear Cutter Cutting
 - Unconventional Shale – 150 m/hr, 5 km
 - Granite 1 m/hr, 20 m

- Impact Hammer Drilling
 - Efficiency
 - Failure Mechanism
Fundamental Cutting Performance
Steering the Bit

- Selectively Push the Bit
 - Hydraulically driven
 - Moving Pistons

- Environment
 - 220 + °C
 - 70 MPa
 - 10 MPa (Differential)
 - Water, Oil, Solids
Mechanical Power at Bit

- Mechanical Power Transmission
 - Torque through 5,000 m rotating pipe
- Hydraulic Power + Motor
- Mono Motor

- Elastomer Challenge
 - Chemical Stability
 - Thermal Stability
 - Mechanical Deformation
 - Abrasion
Characterise Formation

- Lithology
- Permeability
- Resistivity
- Electrical Isolation
- Abrasion Resistant
- Temperature, Pressure
- Electronic Board Stability
Common problems requiring well intervention

- High to Ultra-high reservoir temperature
- Typically within the 200-300+ °C range
- Corrosion (reservoir and occasionally top hole)
- CO$_2$ and H$_2$S corrosion
- Pitting, galvanic, crevice
- Scaling
- Silica, Calcium carbonate, and heavy metal Sulphide salts
Scale Removal

- Mineral Scale Removal – No Ductile Steel Damage
- Abrasive Jetting
 - Shape, Hardness, Density, Fracture Toughness, Toxicity
- Sterling Beads
Geothermal Power

- Critical Enabler for Sustainable Power Systems
- High Temp Fluid Flow
- High Permeability Formation Conduit
- Challenging Environment
 - 220 °C, 60 MPa, Water, Oil, Solids, Corrosive
- Hydraulic, Electronics, Mechanical, Materials Systems