Soft Robotics and electroactive polymers

Dr Jonathan Rossiter
Jonathan.Rossiter@bris.ac.uk
Department of Engineering Mathematics
Bristol Robotics Laboratory
University of Bristol

27 March 2015

Google “Robot”, 12 November 2014

Google “Soft Robot”, 24 November 2014

Whitesides Group, Harvard (www.youtube.com/watch?v=2DsbS9cMOAE)

Walters UWE/BRL (www.youtube.com/watch?v=v6u26nol5H4)

Bristol Robotics Laboratory
largest robotics research centre in the UK

“from soft materials and compliant mechanisms to soft-smart machines and beyond”

Soft-smart Materials
Soft-smart Mechanisms
Soft-smart Machines

The Soft Robotics Group
• Jonathan Rossiter
• Andrew Conn
• researchers:
 Tareq Assaf, Jon Winfield, Helmut Hauser
• PhD students:
 E.Knoop, A. Hinitt, A. Bowers, H. Philamore,
 M. Dicker, A. Bell, A. Fishman, P. Zanini
• Peter Walters (3D fabric, UWE)
• Ioannis Ieropoulos (energy and ecology, UWE)

Smart materials I

• Electroactive Ionic Electronic
 • Thermoeactive
 • Chemoactive
 • Photoactive
 • Shape memory

Ionic actuation
Voltage OFF Uniform cation distribution
Voltage ON Cation migration
Smart materials II

Electronic actuation – Dielectric elastomers

Spray deposition of DEAs

3D Printing soft machines

Novel actuation modes

“Musculoskeletal” type 6-DOF conical DE design

Soft robotics and camouflage

Artificial chromatophores and smart skins

Cephalopod-inspired chromatophores

Zebradfish-inspired fluid translocation

Tactile stimulation

Whiskers and skins

Electronic actuation – Dielectric elastomers

Spray deposition of DEAs

3D Printing soft machines

Conn and Rossiter (2012) “Towards holonomic electro-elastomer actuators with six degrees of freedom,” Smart Materials and Structures, 21

Walters, Rossiter & Stoimenov (2009) EAPAD 2009

Araromi, Conn, Ling, Rossiter, Vaidyanathan, Burgess (2011) Sensors and Actuators A Physical, 171

Walters, Rossiter & Stoimenov (2009) EAPAD 2009

Soft robotics and camouflage

Artificial chromatophores and smart skins

Soft robotics and camouflage

Artificial chromatophores and smart skins

Tactile stimulation

Whiskers and skins

Roger Hanlon, MBL

www.youtube.com/watch?v=GRVwGHi54Mw

Beutigard Brats

www.youtube.com/watch?v=G-D-0MvHb5s

Cephalopod-inspired chromatophores

Zebrafish-inspired fluid translocation

Assaf et al. SPIE EAPAD 2014

Whiskers and skins

Prescott, Sheffield

www.youtube.com/watch?v=TV1E3dDq83w

Assaf et al. SPIE EAPAD 2014

Assaf et al. IEEE Sensors 2013

Rossiter, Yap and Conn (2012) “Biomimetic chromatophores for camouflage and soft active surfaces,” Bioinspiration and Biomimetics, 7
Kirgami and laminar soft robots
Self-opening soft cuspid valves
Artificial Cilia

Auxetic and self-deploying structures
Auxetic shape memory polymers
Radially Folding Structures

Biodegradable Robots

Soft Robotics: questions and challenges
• Soft-Smart Materials
 • Functional materials
 • Stronger; faster; scalable
 • Biocompatible and biodegradable
 • Bio-hybrid
• Self organisation
 • Ultra-thin layers
 • 3D Structures
• Soft-Smart Mechanisms
 • Compliant mechanisms
 • Morphological computation
 • Embedded intelligence
 • Communication and control
• Soft-Smart Machines
 • Micro/nano soft robots
 • Biodegradable
 • Cooperative/synergist behaviour
 • Implantable medical devices
 • Assist devices
 • Environmental remediation

www.robosoftca.eu
RoboSoft: Building a scientific community in Soft Robotics