Use of elastomers in an oil-filled drilling tool

13th December 2019 – Daniel Minett-Smith C. Eng
Introduction 1

• Rockatek Limited
 • SME Engineering Consultancy based in Gloucester, UK
 • Specialist areas – downhole tools
 • Directional/steering tools, vibration tools, drilling optimisation
 • Oil and gas, geothermal, defence, motorsport, renewable energy
 • Design, analysis and testing in-house
 • Rotary seals, vibration mitigation, fatigue, HTHP
 • 50+ years of industry experience

• Daniel Minett-Smith
 • Chartered Mechanical Engineer
 • Undergraduate and post graduate degree in Mechanical Engineering
 • Core interest, theoretical analysis, materials application, validation through testing
Introduction 2

• Daniel Minett-Smith
 • Chartered Mechanical Engineer
 • Undergraduate and post graduate degree in Mechanical Engineering
 • Core interest, theoretical analysis, materials application, validation through testing

One of Rockatek’s rotary seal test fixtures - pressure, rotation, various fluids, elevated temperature
Deep directional drilling

• Technique used to access remote reserves
 • Including geothermal energy
• Multiple wells from single surface location
• Access beneath lakes, towns, mountains
• Typical US land ‘J – type’ well
 • Vertical section (5kft-7kft (1.5-2km) vertical depth)
 • Kick-off
 • Curve (6° - 12°/100ft (30m))
 • Lateral (5kft – 20kft (1.5km – 6km))
Directional drilling tools

• ‘Slide’ drilling tools
 • Directional mud-motors
 • Fixed bend
 • Point bend in desired direction/toolface
 • >90% of drill string is NOT rotating
 • High torque and drag
 • Low rate of penetration (ROP)
 • Limited lateral lengths (typically <6kft (1.8km))
 • Lower cost drilling assembly, incumbent technology
 • Simple deployment
Directional drilling tools

- Rotating drilling tools
 - Rotary steerable tools (RSS)
 - Proportional steering mechanism
 - Often with integrated on-board control logic
 - >90% of drill string is rotating
 - Reduced torque and drag
 - Higher ROP
 - Extended reach laterals (20kft/6.1km and more)
 - Higher investment system
 - Maintenance and capital cost
 - Better directional performance
 - Improved hole quality (easier to run casing strings)

Types –
- Push the bit
- Point the bit
- Hybrid
- Mechanical force
- Hydraulic force
- Erosion
The environment

- **Operating conditions**

 Challenging
 - High ambient temperature - up to 200°C
 - High ambient/hydrostatic pressure - up to 30,000psi/200MPa
 - Wide range of drilling fluid chemistry - high pH, diesel, paraffin, saline, etc
 - Abrasive particles entrained in drilling fluid
 - Internal oil chemistry - PAO, esters, etc
 - High material strain – mechanical requirements

- **More favourable**
 - Lack of oxygen
 - Service life is relatively short - minimum ‘bit run’ ~ 200hrs

COST OF FAILURE IS HIGH
Elastomer components

• Sealing solutions
 • Mud/oil seals
 • Slow moving volumetric compensation seals
 • High speed reciprocation for actuation
 • Rotary shaft seals (with unsteady rotation rate)
 • Need to prevent contamination of clean hydraulic system
 • 6 degrees of vibration
 • Oil/Oil seals
 • High speed reciprocation for hydraulic power (sometimes passing over ports)
 • Rotary shaft seals
 • More insensitive to limited leakage
 • Wide range of oil viscosity
Elastomer components

• Other applications
 • Vibration Isolation/damping (particularly electrical/electronics)
 • High pressure isolation for parts that need to operate in surface atmospheric conditions
 • Compensation bladders/gaiters/diaphragms
 • Power section rotors
Types of elastomers

- Typically NBR and HNBR perform well
 - Good performance in oil, water, alkaline, H_2S
 - Reliable when exposed to mechanical flexure (even after pre-ageing)
 - Can be formed and moulded
 - Able to exceed typical temperature limit in downhole conditions (likely due to limited oxidation/cross linking)
 - Cost effective and available
- FKM1/2/3/5: poor mechanical performance
- FFKM: good resistance to environment (>200°C)
 - Expensive
 - Difficult to mould
What is failure?

• System failure likely before catastrophic component failure
 • Hydraulic leak – loss of pressure, reduced lubrication, cavitation
 • Environment invasion – accelerated erosion, wear, filter blockage
 • Increased clearances – vibration, bit bounce, dynamic events

• Modes and mechanisms
 • Chemical reactions and exposure time
 • Abrasion, loss of material
 • Fracture
 • Tearing
 • Creasing
 • Buckling
 • Expansion
 • Puncture

Pressure will offset temperature effects
Knowledge transfer

Oil and gas professionals, technology transfer

• Geothermal energy
 • 99% of planet earth has a temperature in excess of 1000°C
 • Temperature increases 20°C - 40°C per km depth
 • Oil and gas wells in US land are 170°C (~5km deep)
 • Estimated to cost 5million USD per installed megawatt
 • 50% of cost is in the drilling phase

• Pushing the boundaries, targets
 • Typically much larger diameter
 • Fractured formations lead to major loss of circulating fluid
 • Exposure to high temperature fluids (supercritical in some cases)
 • Exposure to steam
 • Slotted/perforated liner (longer exposure to productive formations)
Future elastomers

• Potential solutions, understanding limitations
 • Need to be tailored to each situation
 • Limitations need to be understood and acknowledged

• Topic for discussion amongst this forum
Design, analysis and testing

Underlying principles
• Chemical reactions and rates
• Solutions and diffusion
• Fracture mechanics
• Effects of hydrostatic and environment pressures

• Mathematical modelling (inc. FEA)
• Laboratory experiments
• Physical testing and validation