DESIGNING OF CRADLE-TO-CRADLE LOOPS FOR ELASTOMER PRODUCTS

Wilma Dierkes, Kuno Dijkhuis, Siti Saiwari, Hans van Hoek, Louis Reuvekamp, Jacques Noordermeer, Anke Blume

University of Twente
Elastomer Research Testing B.V.
Prince of Songkla University
Introduction
Material from end-of-life tires

Tires in the EU annually = 4,670,000 tons

Raw materials needed for producing these tires
(passenger cars, buses, light trucks):
 Rubber: 50% = 2,380,000 tons
 Filler (carbon black, silica): 26% = 1,167,500 tons
 ZnO: 2% = 100,000 tons
 Other ingredients: 4% = 280,200 tons
 Steel and wire: 15% = 681,820 tons
 Textile cord: 3% = 140,400 tons

Total: 3,838,740 tons
Introduction
What are the trends?

R&D: Number of patents on...

Legislation

USA
ACME TIRE COMPANY
WILEY RR-S

Korea

Japan

EU

Introduction
Recycling alternatives

Cradle to Cradle

DEVULCANIZATION

FINE GRINDING

PYROLYSIS or other processes

Cradle to ...

http://wdo.ca/Portals/_default/Skins/wdo/sliderimg/usedtires.jpg

Introduction
Status of recycling alternatives

‘Tires back into tires’: The only way to considerably broaden the market for recycled rubber

- Technology Readiness Levels (TRL):
 - Passenger car tire rubber: TRL 5-6 (technology demonstration)
 - Truck tire rubber: TRL 6-8 (system/subsystem development)

- Concentration of devulcanizate in tire compounds: a multitude of current concentrations (depending on the compound type)

- Technology Readiness Levels (TRL):
 - No significant development potential of conventional technologies (batch, long residence time, high temperatures)
 - Improvements by after-treatments
 - New technologies?

- Large-scale application in tires only possible with significant quality improvements

- Technology available, also for very fine powder
- No further quality improvements possible
- Very limited application in virgin compounds
Introduction
Devulcanization versus reclamation

DEVULCANIZATION:
Crosslink scission \Rightarrow properties of devulcanisate similar to properties of original material

REGENERATION:
Polymer scission \Rightarrow shorter polymer chains \Rightarrow poor properties
EPDM roof sheeting
Optimization the devulcanization process

Influence of devulcanization conditions:
- Concentration devulcanization aid (hexadeclyamine)
- Temperature
- Rotor speed
- Time

Influence on
- Mooney viscosity
- Insoluble fraction
- Overall XLD
- Monosulfidic XLD

Thesis Kuno Dijkhuis, ‘Recycling of vulcanized EPDM rubber’, University of Twente, 2008
EPDM roof sheeting

Optimization the devulcanization process

<table>
<thead>
<tr>
<th>Influence of devulcanization conditions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Concentration devulcanization aid</td>
</tr>
<tr>
<td>(hexadeclyamine)</td>
</tr>
<tr>
<td>▪ Temperature</td>
</tr>
<tr>
<td>▪ Rotor speed</td>
</tr>
<tr>
<td>▪ Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Influence on</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mooney viscosity</td>
</tr>
<tr>
<td>• Insoluble fraction</td>
</tr>
<tr>
<td>• Overall XLD</td>
</tr>
<tr>
<td>• Monosulfidic XLD</td>
</tr>
</tbody>
</table>

Diagrams

Figure (a):
- Insoluble fraction (%)
- HDA-concentration (wt%)
- Temperature (°C)

Figure (b):
- Insoluble fraction (%)
- Rotor speed (rpm)
- Time (min)

Thesis Kuno Dijkhuis, 'Recycling of vulcanized EPDM rubber', University of Twente, 2008
EPDM roof sheeting
Optimization the devulcanization process

Influence of devulcanization conditions:
- Concentration devulcanization aid (hexadeclyamine)
- Temperature
- Rotor speed
- Time

Influence on
- Mooney viscosity
- Insoluble fraction
- Overall XLD
- Monosulfidic XLD

(a) Overall crosslink density \(\times 10^4 \text{ mol/cm}^3 \)

(b) Overall crosslink density \(\times 10^4 \text{ mol/cm}^3 \)

HDA-concentration (wt%)
Temperature (°C)
Rotor speed (rpm)
Time (min)

Thesis Kuno Dijkhuis, 'Recycling of vulcanized EPDM rubber', University of Twente, 2008
EPDM roof sheeting

Optimization the devulcanization process

Influence of devulcanization conditions:
- Concentration devulcanization aid (hexadeclyamine)
- Temperature
- Rotor speed
- Time

Influence on:
- Mooney viscosity
- Insoluble fraction
- Overall XLD
- Monosulfidic XLD

Thesis Kuno Dijkhuis, ‘Recycling of vulcanized EPDM rubber’, University of Twente, 2008
EPDM roof sheeting

Optimization the devulcanization process

Table 1: Optimization Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mooney viscosity</th>
<th>Insoluble fraction</th>
<th>Overall XLD</th>
<th>Mono-sulfidic XLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration DA</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Temperature</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Rotor speed</td>
<td>↑</td>
<td>↓</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Time</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

Table 2: Feedstock Properties

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Crosslink density ($\times 10^{-4}$ mol/cm3)</th>
<th>Insoluble fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional cured</td>
<td>Overall 2.39</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td>Monosulfidic 0.36 (15%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di- plus polysulfidic 2.03 (85%)</td>
<td></td>
</tr>
</tbody>
</table>
EPDM roof sheeting
Conventionally versus efficiently cured rubber

<table>
<thead>
<tr>
<th>Feed stock</th>
<th>Crosslink density ($\times 10^{-4}$ mol/cm3)</th>
<th>Insoluble fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Monosulfidic</td>
</tr>
<tr>
<td>Conventionally cured</td>
<td>2.39</td>
<td>0.36 (15%)</td>
</tr>
<tr>
<td>Efficiently cured</td>
<td>0.97</td>
<td>0.51 (52%)</td>
</tr>
</tbody>
</table>
EPDM roof sheeting
Application study

Currently implemented at several roof sheeting companies

Thesis Kuno Dijkhuis, ’Recycling of vulcanized EPDM rubber’, University of Twente, 2008
Devulcanization versus reclamation
Analytics

Sol fraction (%)

- Random main chain scission
- Crosslink scission

Decrease in crosslink density

Devulcanization versus reclamation
Horikx Model

\[1 - \frac{v_f}{v_i} = 1 - \frac{v_f \left(1 - s_f^{1/2}\right)^2}{v_i \left(1 - s_i^{1/2}\right)^2} \]

\[\gamma_i, \gamma_f: \text{average number of crosslinks per chain in the insoluble network after/ before reclamation} \]
\[s_i: \text{soluble fraction of the rubber network before reclaiming} \]
\[s_r: \text{soluble fraction of the reclaimed vulcanizate} \]
\[v_i: \text{crosslink density of the network prior to treatment} \]
\[v_f: \text{crosslink density of the reclaimed vulcanizate} \]

Passenger car tire rubber: SBR
Thermo-mechanical treatment

(a) TT: thermal treatment without exclusion of oxygen

S. Saiwari: Post-consumer tires back into new tires; thesis; University Twente, 2013
Passenger car tire rubber: SBR
Thermo-mechanical treatment

(a) TT: thermal treatment without exclusion of oxygen
(b) TL: thermal treatment and quenching in liquid nitrogen after treatment

S. Saiwari: Post-consumer tires back into new tires; thesis; University Twente, 2013
Passenger car tire rubber: SBR
Thermo-mechanical treatment

(a) TT: thermal treatment without exclusion of oxygen
(b) TL: thermal treatment and quenching in liquid nitrogen after treatment
(c) TN: thermal treatment under nitrogen atmosphere; quenching devulcanizate in liquid nitrogen
Passenger car tire rubber: SBR
Thermo-mechanical treatment

TT: thermal treatment without exclusion of oxygen
TL: thermal treatment and quenching in liquid nitrogen after treatment
TN: thermal treatment under nitrogen atmosphere; quenching devulcanizate in liquid nitrogen
SBR devulcanization
Effect of stabilizers

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Brand name</th>
<th>Type</th>
<th>Chemical structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentaerythritol tetraakis (3-(3,5-di-tert-butyl-4-</td>
<td>Irganox</td>
<td>Hindered</td>
<td></td>
</tr>
<tr>
<td>hydroxyphenyl)propionate)</td>
<td>1010</td>
<td>Phenolic</td>
<td>![chemical_structure_1.png]</td>
</tr>
<tr>
<td>Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)</td>
<td>Irganox</td>
<td>Hindered</td>
<td>![chemical_structure_2.png]</td>
</tr>
<tr>
<td>propionate</td>
<td>1076</td>
<td>Phenolic</td>
<td></td>
</tr>
<tr>
<td>Tris(2,4-diter-</td>
<td>Irgafos</td>
<td>Phosphite</td>
<td>![chemical_structure_3.png]</td>
</tr>
<tr>
<td>butylphenyl)phosphite</td>
<td>168</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Decrease in crosslink density without additional sol fraction indicates less polymer scission
- Stabilizers allow to work at higher temperatures, thus faster processes

S. Saiwari: Post-consumer tires back into new tires; thesis; University Twente, 2013
Passenger car tire elastomers
Devulcanization mechanisms

Devulcanization aid: DPDS, 15 mmol/100 g
Oil: TDAE, 5%wt
Temperature: 220°C
Time: 6 minutes
Atmosphere: N₂ purging
Cooling: Liquid nitrogen
Passenger car tire rubber
Devulcanization conditions

<table>
<thead>
<tr>
<th>Factors</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-vulcanization aids</td>
<td>DPDS 30 mmol/100 g compound</td>
</tr>
<tr>
<td>De-vulcanization oil</td>
<td>TDAE 5% w/w</td>
</tr>
<tr>
<td>Swelling time</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Swelling temperature</td>
<td>65 °C</td>
</tr>
<tr>
<td>De-vulcanization time</td>
<td>6 minutes</td>
</tr>
<tr>
<td>De-vulcanization temperature</td>
<td>220 °C</td>
</tr>
<tr>
<td>De-vulcanization atmosphere</td>
<td>With nitrogen gas purging</td>
</tr>
<tr>
<td>Dumping condition</td>
<td>Exclusion from air/oxygen</td>
</tr>
</tbody>
</table>

Addition of stabilizer
Passenger car tire rubber
Internal mixer versus extruder devulcanization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Brabender internal mixer</th>
<th>Extruder</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>DPDS, 15 mmol/100g</td>
<td>DPDS, 18 mmol/100g</td>
</tr>
<tr>
<td>TDAE</td>
<td>5 %wt</td>
<td>6 %wt</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>TDTBP, 1 %wt</td>
<td>TDTBP, 1 %wt</td>
</tr>
<tr>
<td>Swelling temperature</td>
<td>65°C</td>
<td>65°C</td>
</tr>
<tr>
<td>Swelling time</td>
<td>30 minutes</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Devulcanization time</td>
<td>6 minutes</td>
<td>Min. 6 minutes</td>
</tr>
<tr>
<td>Rotor/screw speed</td>
<td>50 rpm</td>
<td>10 rpm</td>
</tr>
<tr>
<td>Devulcanization temperature</td>
<td>220°C</td>
<td>220°C</td>
</tr>
<tr>
<td>Devulcanization atmosphere</td>
<td>N$_2$ gas purging</td>
<td>N$_2$ gas purging</td>
</tr>
<tr>
<td>Screw configuration</td>
<td>High shear</td>
<td>Low shear with kneading elements in devulcanization zone</td>
</tr>
<tr>
<td>Extrudate handling</td>
<td>Quenching in LN$_2$</td>
<td>Cooling calender</td>
</tr>
</tbody>
</table>
Application study in a blend
Different tire compounds

- No adjustment of compound composition
- ‘First shot’ D-GTR; not optimized
- Decrease in tensile strength of up to 55% for 50/50 blend
- Elongation at break increased for base, carcass and apex

- Compound adjustment gave an increase in tensile strength of 60% in a 50/50 blend
- Absolute improvement for apex, slight decrease for the other compounds
- In a 30/70 blend, the original tensile value will be reached except for the base compound
Limitations
Silica compounds
Limitations
Silica compounds

Reference samples
plain white rubber 5% powder 5% compound

Smoothest surface
96 h swelling,
two passes @ 150°C & 220°C

TGA residue
20 %wt
compound: 6 %wt
Challenges

<table>
<thead>
<tr>
<th>Contaminations</th>
<th>Fibres</th>
<th>Steel</th>
<th>Sand</th>
<th>Glass ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different polymers</td>
<td>SBR</td>
<td>BR</td>
<td>NR</td>
<td>IIR</td>
</tr>
<tr>
<td>Fillers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica, carbon black become less active</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curing agents and acitvity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remains of curing agents & reduced curing activity of the polymers influence new curing process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging during first lifecycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

EPDM roof sheeting – the easy one
- Degree of devulcanization strongly depends on network structure
- Amines are the DA’s of choice
- Risk of re-combination at high concentrations and high temperatures
- Rotor speed and devulcanization time have minor influence
- 40% of virgin rubber can be replaced by devulcanizate

Passenger car tire rubber – the difficult one
- Most critical devulcanization parameter: temperature $\Rightarrow 220^\circ$C
- Screw: low shear design
- Protective atmosphere during and after devulcanization:
 - absence of oxygen
 - efficient cooling
- Maximum degree of devulcanization
 - batch mixer: $< 80\%$
 - extruder: 80% - 90%
- 90% Limit: bound rubber, stable monosulfidic crosslinks
- Visible particles, even for fine powder
Acknowledgements

Windesheim

Professorship of Polymer Technology
Project partner

NWO
Netherlands Organisation for Scientific Research
PhD scholarship for teachers

Schill + Seilacher
Sponsor and chemicals supplier

TECH FOR FUTURE
Incentive fund from Windesheim – Saxion

aliancys
Usage of process equipment

Thank you for your attention

RecyBEM B.V.

Band & Milieu

STW

UNIVERSITY OF TWENTE.