Numerical parameter describing the resistance against Chip & Cut behaviour of rubber

Radek Stoček¹,², Jens Meier³, Ondřej Kratina², Reinhold Kipscholl⁴

¹ PRL Polymer Research Lab., Zlín, Czech Republic
² Centre of polymer systems in Zlín, Tomas Bata University in Zlín, Zlín, Czech Republic
³ German Institute of Rubber Technology, Hannover, Germany
⁴ Coesfeld GmbH & Co. KG, Dortmund, Germany
Outline

• Introduction
• Theoretical background
• Lab testing equipment
• Experimental
• Conclusion
Introduction

Source: www.youtube.com/watch?v=bTnE66fjrI&t=4s
Introduction

TIRE FIELD TEST

- Long time analyses
- High distance duration
- Limited no. of analysed tires
- Tread geometry specific effect

LAB TEST

- Short time analyses
- Low no. of rotating cycles
- Unlimited no. of analysed specimens
- Pure rubber matrix investigation

Tomas Bata University
Centre of Polymer Systems
What is the correlation between Chip&Cut behaviour of tire tread at the field test and rubber matrix based on tire tread compound at lab test?
Outline

• Introduction
• Theoretical background
• Lab testing equipment
• Experimental
• Conclusion
Theoretical background

SLIPPING

ROLLING

$\omega \neq 0 \text{ rad/s}$

$V = 0 \text{ m/s}$

$\omega \neq 0 \text{ rad/s}$

$V \neq 0 \text{ m/s}$
Theoretical background

Crack closing: the interfacial binding energy $2\gamma_0$ is partly converted into elastic energy and partly dissipated in the rubber:

$$2\gamma_{\text{close}}^{\text{eff}} = 2\gamma_0 - \left(\frac{P}{V} \right)$$

Crack opening: the flow of elastic energy into the crack consists of the fracture energy plus viscoelastic energy dissipation:

$$2\gamma_{\text{open}}^{\text{eff}} = 2\gamma_0 + \left(\frac{P}{V} \right)$$

where the energy dissipation per unit time is:

$$P = \int d^3x \dot{\varepsilon}_{ij} \sigma_{ij}$$

Most energy is dissipated in the crack opening mechanism:

$$\gamma_{\text{close}}^{\text{eff}} \ll \gamma_0 \ll \gamma_{\text{open}}^{\text{eff}}$$

Theoretical background

Source: H. Liang et al., Wear 266, 2009
Theoretical background

TIRE FIELD TEST

The resulting tire tread surface is the main criterion for evaluation of the rubber resistance against chip&cut!
From the surface topology
The P-Parameter [N/cycle] based on friction force describing the resistance against Chip&Cut mechanism has been determined!
What exactly is describing the P-Parameter?
The lower the P-Parameter is, the higher the rubber resistance against Chip&Cut!
Outline

- Introduction
- Theoretical background
- Lab testing equipment
- Experimental
- Conclusion
Lab testing equipment

TIRE FIELD TEST

REAL LOAD ON 4WD TIRE
Outer diameter: up to 1.000 mm
Load on tire: up to 1.000 kg = 10.000 N

LOAD ON TEST SPECIMEN
Outer diameter: 50 mm
Load on tire: up to 50 kg = 500 N

LAB TEST

DOWN SCALED
Factor cca, 20

Tomas Bata University
Centre of Polymer Systems
Parameters:
- Dynamical loading (≤ 10Hz)
- Pulse width (≥ 20ms)
- Rotation velocity (≤1500min⁻¹)
- 2-axis loading cell (Fₓ, Fᵧ)
- Changable direction of rotation
- Cyclic or permanent abrasion
- Normal force variation during analysis
Lab testing equipment

$D_1 = 55 \text{ mm}$

$D_2 = 26 \text{ mm}$

$T = 13 \text{ mm}$
Lab testing equipment

SLIPPING

ROLLING

\[\omega \neq 0 \text{ rad/s} \]

\[V = 0 \text{ m/s} \]

\[\omega \neq 0 \text{ rad/s} \]

\[V \neq 0 \text{ m/s} \]
Lab testing equipment

Tomas Bata University
Centre of Polymer Systems
Lab testing equipment
Outline

• Introduction
• Theoretical background
• Lab testing equipment
• Experimental
• Conclusion
Experimental

Ingredients

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>1 [phr]</th>
<th>2 [phr]</th>
<th>3 [phr]</th>
<th>4 [phr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>BR</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>CB N347</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Curatives</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Roration speed

<table>
<thead>
<tr>
<th>Roration speed [rpm]</th>
<th>Normal force [N]</th>
<th>Frequency [Hz]</th>
<th>Pulse width [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>200</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>
Experimental

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>BR</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>CB N347</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Curatives</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

![Graph showing parameter P vs. cycles]

Parameter P [N/cycles] vs. Cycles [-]

Tomas Bata University
Centre of Polymer Systems
Experimental

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>BR</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>CB N347</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>Curatives</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Images showing different samples labeled 2, 3, and 4.
Experimental

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>1 [phr]</th>
<th>3 [phr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>SBR</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>CB N339</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Curatives</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation speed [rpm]</th>
<th>Normal force [N]</th>
<th>Frequency [Hz]</th>
<th>Pulse width [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>50</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental

<table>
<thead>
<tr>
<th>Roration speed [rpm]</th>
<th>Normal force [N]</th>
<th>Frequency [Hz]</th>
<th>Pulse width [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>50</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar chart showing the parameter P [N/cycles] for compounds NR and SBR, with different conditions (Cond1, Cond2, Cond3, Cond4).
Experimental

<table>
<thead>
<tr>
<th>Rotation speed [rpm]</th>
<th>Normal force [N]</th>
<th>Frequency [Hz]</th>
<th>Pulse width [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>50</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR

SBR
Outline

• Introduction
• Theoretical background
• Lab testing equipment
• Experimental

• Conclusion
Conclusion

- Sufficient Data Base for statistical Evaluation
- Very quick Test Results in Laboratory (few days comp. to several weeks)
- Material ranking by reliable measured values rather than by qualitatively misleading estimations

- Faster „time to market“
- Decisions are much more secured
- Saves money
Many thanks for your kind attention!