Modern filler systems and efficient mixing techniques for improved elastomers

U. Giese, H. Chougule, T. Dilman, A. Jain

Deutsches Institut für Kautschuktechnologie e. V., Hannover

Innovation in Rubber Design 2016
December/7th – 8th/2016
London, UK
Requirements on elastomers for extrem conditions

- Temperatur resistance
- Life time
- Media resistance
- Lightweight construction
- Strength
- Elasticity

- Environmental exposure
- REACH
- Emissions
- Smell
- Fire behavior
- Migration

Adapted specific elastomer materials
Elastomers - Adapted Materials

Tools for improvement of elastomer properties

Polymer

Additives/Plasticizers

Crosslinking

Filler-Polymer systems

Polymer-Filler interaction

Dispersion
Fillers - Reinforcement

- **Degradative Fillers**
 - Grinded CaCO₃, mica, talc
- **Dilution Fillers**
 - Clays
- **Semi-Reinforcing Fillers**
 - Precipitated CaCO₃
 - TiO₂, ZnO
 - Si Aluminates
 - Ca Silicates
 - Hydrated Silica
 - Anhydrous Silica
- **Reinforcing Fillers**
 - Carbon blacks

Particle Size (nm)

- 10^5
- 10^4
- 10^3
- 10^2
- 10^1

Fillers - Reinforcement

- **Graphene (exp. graphite)**
 - $h = 5-8$ nm
 - $d = 2-25$ nm
- **Carbon blacks (CB)**
 - 20 – 50 nm
- **Silica**
 - 15 nm
- **Carbon – Nanotubes (CNT)**
 - Aspect/ratio 10 nm/µm

Additional Information

- TIE-GmbH
Carbon fillers - Carbon blacks

Graphitic crystallites
WAXS-measurements

Turbostratic organisations
of graphitic layers

Amorphous carbon
Raman spectroscopy

AFM-measurements show roughness

Heidenreich, 1975

Hess, 1972

Alexander, 1936

La
Lc
Carbon Fillers

Rolled graphene sheets
Single C-Polymer?
C-molecule?

- Bending of C-bonds
- Pyramidalization angle
- Miss-alignment of π-Orbitals
- Higher electron density on external surface of CNTs
- Increasing surface activity

Tube Curvature → Surface Activity

Carbon Nanotubes (CNT)

SWCNTs:
- Single cylinder,
- Diameter: 0.7 to 1.5 nm
- Differences in axial/radial organization of C-atoms

MWCNTs:
- Ø 1 – 50 nm
- Length: appr. 100 nm – μm region
- high aspect ratio

Main process:
Catalytic Vapor Deposition – metal catalysts

Electronic Properties
- Armchair, zigzag, chiral

Main process:
Catalytic Vapor Deposition – metal catalysts

Image:
- TEM-micrograph of MWCNTs, magnif. 50000x
 (G. Schwerdt, DIK)
Characterization of specific surface

Volumetric static gas adsorption:
BET-Isotherme using 1-butene (model substance)

Systems: N121, N347, EB 262, ES 204, Silica MP 1165, VN 2, CNT-NC 7000

$V = \text{volume adsorbed molecules}$

$V_m = \text{monolayer, volume adsorbed molecules}$

$N = \text{adsorbed molecules}$

$N_m = \text{monolayer, adsorbed molecules}$

BET:

$$\frac{p}{(p_0 - p)N_m c + cN_m} = \frac{1}{N_m c} + \frac{c - 1}{N_m} \cdot p$$

Equipment: BEL Sorp max.
Parameter: Temp. 267 K;
$p < 100 \text{ kPa}$

Reduced activity
Distribution of surface energy Q - BET-Isotherm

Static gas adsorption: 1-butene

Systems: N121, N347, EB 262, ES 204, Silica MP 1165, VN 2, CNT-NC 7000

Equipment: BEL Sorp max.
Parameter: Temp. 267 K; $p < 100$ kPa

\[\Theta(p, T) = \frac{N}{N_m} = \int_0^\infty \theta(p, T, Q) \cdot f(Q) dQ \]

Graphitic Planes (sp²)
Crystallite Edges
Amorphous Carbon (sp³)
Slit Shaped Cavities

CNT: Low surface energy,

N = adsorbed molecules
N_m = monolayer, adsorbed molecules

Characterization of CNT/CB – Surface energy

Inverse Gaschromatography (IGC)

Test component: e.g. pentane
Retention time \(t_r = t_r2 - t_r1 \)
Retention volume \(V_r = t_r \times F \times j \)
Spec. retention volume \(V_{r*} = V_r / m \)

\(t_r \) = Retention Time (min), \(F \) = Carrier gas flow rate (ml/min),
\(j \) = Pressure correction factor, \(m \) = mass of the filler (g),
\(P_i \) = Inlet pressure (Bar), \(P_o \) = Outlet pressure (Bar)
Characterization of CNT and CB by IGC

Test components:
- Pentane
- Hexane
- Heptane
- Acetone
- Acetonitrile

Surface energy:
\[\gamma_s = \gamma_s^d + \gamma_s^{sp}, \text{ with } \gamma_s^d, \gamma_s^{sp} \text{ disp. / polar part} \]

\[\gamma_s^d = \frac{\Delta G_{CH_2}}{4N^2} \cdot \frac{a_{CH_2}^2 \cdot \gamma_{CH_2}}{a_{CH_2}} \]

\(a_{CH_2} \): area covered by a \(-CH_2-\) unit;
\(\gamma_{CH_2} \): surface free energy of a surface composed entirely of \(-CH_2-\) units; \(N \) = Avogadro’s number

Free sorption energy:
\[\Delta G = R \cdot T \cdot \ln(V_r^*) \]

Surface energy for CNTs and CBs
Test component: pentane

Higher interaction
Reinforcement in elastomers

Phys./chem. filler-rubber interaction

Hydr. effect: \(\eta = \eta_0 \cdot (1 + 2.5 + \phi + 14.1 \phi^2) \)

\[G = \nu \cdot k \cdot T \]

\(\nu = \text{network density} \)

\(\phi = \text{filler vol.- fraction} \)

S. Shiga, M. Furuta, RCT, 58, (1985), 1/22
Used materials and compounds

<table>
<thead>
<tr>
<th></th>
<th>phr</th>
<th></th>
<th>phr</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBR (28 % ACN)</td>
<td>100</td>
<td>EPDM (50 % ext. oil)</td>
<td>100</td>
</tr>
<tr>
<td>CNT NC7000</td>
<td>0-10</td>
<td>CNT NC7000</td>
<td>0-10</td>
</tr>
<tr>
<td>CB (N550)/N772</td>
<td>0-60</td>
<td>CB (N550)</td>
<td>0-50</td>
</tr>
<tr>
<td>ZnO/st.-acid</td>
<td></td>
<td>Paraff. oil</td>
<td>10</td>
</tr>
<tr>
<td>S/CBS</td>
<td></td>
<td>ZnO/st.-acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S/ZBEC/TBzTD/MBT/CBS</td>
<td></td>
</tr>
<tr>
<td>FKM</td>
<td>100</td>
<td>Hybrid systems:</td>
<td></td>
</tr>
<tr>
<td>CNT NC7000</td>
<td>0-10</td>
<td>CB / CNT ratios in phr:</td>
<td></td>
</tr>
<tr>
<td>CB (N 990)</td>
<td>0-60</td>
<td>0 – 60 / 2 – 15</td>
<td></td>
</tr>
<tr>
<td>Carnauba wax</td>
<td>1</td>
<td>depending on polymer</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHBP /TAIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPDM: Keltan 9565 Q, high molecular type, 62.5 % ethylene

Hybrid systems:

1. **Internal mixer (Haake Rheomix),**
 Rotor speed. Var. (50; 75; 100 rpm)
2. **Two roll mill (Curing system)**

TAIC: Triallylisocyanurate (70 % active content)
DHBP: 2.5-Di-methylhexane-2.5-di-tert. butyl peroxide (45 % active content)
Mixing optimization

Mixing sequence:

2 min.: filler
5-6 min.: ZnO/Stearic acid

Two roll mill:
4-5 min. CBS/S

Parameters:
• mixing time
• rotor speed

Laboratory Mixer (Polylab)
Chamber- Vol.: 300 ml
Filling: 70 %
Compound: 6 phr CNTs/NBR/ZnO/St.-acid

Increasing rotor speed:
Increase in torque and temperature
Mixing of Compounds - CNT vs. CB

Mixing conditions
Temp. 50 °C
Rotor speed 50 rpm
Mixing time 15 min.

Mixing steps
1) 0 min. polymer
2) 3 min. CNTs/CB N550
3) 6 min. ZnO+ Stearic acid (3 phr each)
4) 15 min. Stop

Two-roll mill
1) Sulfur (2 phr)
2) CBS (2 phr)

- CNTs require higher torque than CB (higher energy input with CNTs) at same temperature
- Temp. increases more with CNTs than with CB, 10 phr CNT: 150 °C vs. CB: 135 °C
Mixing optimization - Variable CNT-concentration

Laboratory Mixer (Polylab)
Chamber- Vol.: 300 ml
Filling: 70 %
Compound: 6 phr CNTs

Concerning temperature and torque profiles
best parameter: 15 min. and 50 rpm
Morphological Characterization

System: FKM/1.5 Vol-% CNTs- nanocomposites, Prepared: Lab-Mixer

Preparation/Specimen:
- Ultramicrotome
- Diamant knifes.
- Cryo-sections (100 nm).
- Magnification: 31,500 x

- TEM: Zeiss Libra 120
 Acc. voltage: 120 kV,

Clusters of CNTs
Some agglomerates
No difference from 50 to 60 rpm
Rheological Properties of FKM-systems

Rubber Process Analysis (RPA)

Alpha Technologies RPA 2000
Frequency: 1 Hz
Amplitude: 0.3 to 400 %
Temperature: 80 °C
Sample mass: approx. 5 g.

Low additional content of CNT (hybrid systems): 15 / 5 for CB/CNT ~ 40 phr CB ~ 10 phr CNT

FKM-CNT

FKM-CB (N990)

FKM-CB (N990)/CNT

10 phr CNT
Rheological Properties – Payne effect

Rubber Process Analysis (RPA)

Alpha Technologies RPA 2000
Frequency: 1 Hz
Amplitude: 0.3 to 400 %
Temperature: 80 °C
Sample mass: app. 5 g.

- CNTs affects higher increase of G' than CB
- CNT shows higher Payne effect - anisotropy (for example at 5 Vol.%)

FKM/-, NBR/- and EPDM/CNT

Related storage modulus $\frac{G_f}{G_u}$ - difference at 1 % and 400 % strain

- CNTs affects higher increase of G' than CB
- CNT shows higher Payne effect - anisotropy (for example at 5 Vol.%)
Vulcanization behavior – Mixing parameters

System: NBR/CNT (6 phr)

Equipment: Rheometer MDR 2000 E

\[\Delta S \cong G = \nu_e \cdot R \cdot T \]

Temp.: 160 °C
Deformation-angle: +/-1,5 °
Frequence: 1 Hz

No significant influence of mixing parameters on crosslinking level
Vulcanization behavior as $f(c_{\text{filler}})$

Results:
- Vulcanization time (t_{90}) is reduced by CNTs, (higher thermal conductivity)
- ΔS is increased slightly by CNTs – different behavior at percolation limit

 (20 dNm vs. 17 dNm)

Rheometer:
- Temp.: 160 °C
- Deformation-angle: +/-1,5 °
- Frecuence: 1 Hz

 (DIN 53529)

NBR/CB N550

NBR/CNT

T_{90} (min) vs. $S_{\text{max}}-S_{\text{min}}$ (dNm)

C_{NT} (phr) vs. T_{90} (min.)

$S_{\text{max}}-S_{\text{min}}$ (dNm) vs. C_{CB} (phr)
Vulcanization behavior of FKM-systems as \(f(c_{\text{filler}}) \)

Rheometer:
Temp.: 160 °C
Deformation-angle: +/-1.5 °
Frequency: 1 Hz
(DIN 53529)

FKM/CNT

At 5 phr
\[\Delta S_{\text{CNT}} = 27.0 \text{ dNm} \]
\[\Delta S_{\text{CB}} = 13.3 \text{ dNm} \]

Higher \(c_{\text{CNT}} \): Increase in \(\Delta S \), higher as at NBR (reinforcing effect)
Mechanical Properties

Stress Strain –measurements acc. to DIN 53504
S2-specimen
Speed: 200 mm/min
Zwick-testmachine

- CNTs reinforce at low concentrations much more than CB
- Elongation at break decreases above percolation (2 to 4 phr)
- At 10 phr $\sigma_{\text{CNT}} = 12.0 \text{ MPa}$, $\varepsilon_{\text{CNT}} = 209 \%$
 $\sigma_{\text{CB}} = 8.5 \text{ MPa}$, $\varepsilon_{\text{CB}} = 363 \%$
Mechanical Properties

Stress Strain –measurements acc. to DIN 53504

S2-specimen

Speed: 200 mm/min

Zwick-testmachine
Reinforcing Factor CNT vs. CB

From stress-strain measurements:

Related modulus at 100 % Reinforcing Factor = \(\left(\frac{\sigma_F}{\sigma_0} \right)_{100\%} \)

RF\text{FKM}: 4 : 1.5 Vol.% CNT/17 Vol. % CB
RF\text{NBR}: 4 : 3.2 Vol.% CNT/19 Vol. % CB
RF\text{EPDM}: 2 : 5.0 Vol.% CNT/15 Vol. % CB

For the same reinforcing effect
The loading of CB has to be factor 5-6 higher than for CNT
Polymer-Filler Interaction

Swelling experiments: Kraus Equation

Specimen: 2 mm discs, 1 g
Swelling medium: MEK
Temperature: 20 °C
Equilibrium: 24 h

\[
\frac{V_{ro}}{V_{rf}} = 1 - m \left(\frac{\phi}{1 - \phi} \right)
\]

\[
C = \frac{m - Vr_0 + 1}{3(1 - Vr_0^{1/3})}
\]

\(V = \) equilibrium volume fraction, filled/unfilled
\(m = \) polymer-filler interaction parameter
\(C = \) Kraus constant
\(\phi = \) filler volume fraction

<table>
<thead>
<tr>
<th>Interaction parameter</th>
<th>FKM/CNT</th>
<th>NBR/CNT</th>
<th>NBR/CB</th>
<th>EPDM/CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>2.3</td>
<td>1.6</td>
<td>0.3</td>
<td>0.7(^1))</td>
</tr>
<tr>
<td>(C)</td>
<td>12.2</td>
<td>3.8</td>
<td>1.5</td>
<td>2.5(^1))</td>
</tr>
</tbody>
</table>

\(^1)\)EPDM-values are corrected by the extender oil content
Electrical Conductivity

Dielectric spectroscopy

 Principle: Orientation of dipoles in presence of altering current (AC)

Permittivity

\[\varepsilon^* = \varepsilon' - i\varepsilon'' \]

\(\varepsilon''\) reaches maximum values at Tg

Conductivity

\[\sigma = \varepsilon_0 \varepsilon'' \omega \]

\[\sigma'' = \varepsilon_0 \varepsilon' \omega \]

High Resolution Dielectric Analyzer
BDS 40 (Novocontrol GmbH)
\(f = 10^{-1} - 10^7\) Hz

Dielectric Constant \(\varepsilon\)
Free Charge Carriers (Electrons, Ions) Conductivity \(\sigma\)
Dipoles Polar Molecules
Electrode polarisation

Glass Transition
\(\alpha\) - relaxation
\(\beta\) - relaxation
Segment movements

Principle: Orientation of dipoles in presence of altering current (AC)
Electric Conductivity – NBR-systems

Method:
High Resolution Dielectric Analyzer
BDS 40 (Novocontrol GmbH)
f = 10^{-1} – 10^{7} Hz

Parameter: filler content
filler type

Electrical saturation above elect. percolation threshold

At 10 phr
\[\sigma'_{\text{CNT}} = 0.01 \text{ S/cm} \]
\[\sigma'_{\text{CB}} = 2.5 \times 10^{-10} \text{ S/cm} \]
Electric Conductivity – FKM-systems

Method:
High Resolution Dielectric Analyzer
BDS 40 (Novocontrol GmbH)
\(f = 10^{-1} – 10^{7} \) Hz

- CNT: high conductivity, \(\text{sp}^{2} \) - structure of C-atoms
- Continuous filler-filler contact network
- High aspect ratio of the CNTs, substitution of CB by small amounts of CNT (hybrid)

Parameter: Filler content
Filler type and combination
Electric Conductivity

Method:
High Resolution Dielectric Analyzer
BDS 40 (Novocontrol GmbH)
f = 10^{-1} – 10^{7} Hz

- Electrical Percolation Threshold: CNTs = 1-2 phr range
- Depending on polymer type:
 - CNTs = 1-2 phr range
 - CB = 10-15 phr range, Factor : < 5 to 6
 - Perculation threshold is < appr. 5 phr (0.6 to 2.8 vol-%)
High conductivity silicon-CNT composites for electrodes

Objective:
- Material development for an electrode as implantate to the brain measuring and stimulation of neuronal signals
- Treatment of neurological diseases like Alzheimer's, Morbus Parkinson

Materials
- Biological compatible soft silicone rubber PDMS (product Sylgard 184)
 - crosslinking: Pt-catalysed curing system
 - dyn. viscosity: 3500 mPa*s (liquid silicone)

- Highly electrical conductive filler – CNT Nanocyl 7000 (MWCNT)
 (volume resistivity on powder = 10^{-4} Ω*cm or conductivity of 10^6 S/m comparable to Cu or Au)
Mixing of low viscous silicone/CNT-compounds

Using an internal mixer or laboratory stirring system for low-viscosity mixture

Difficulties
- shear thickening while compounding
- motor strength too low
- Bad dispersion

Planetary mixer
- different geometry and principle of mixing
- two mixing tools
- additional scraper (10 rpm)
- High shear forces
- up to 620 rpm
- vacuum bell jar

PC-Laborsystem Dissolver - LPV 1A40
Source: http://www.pc-laborsystem.ch

TEM micrographs: 2 phr CNT in silicone, DIK
Mixing Optimization

Rotors speed 4.0 wt% CNT

best result with 300 rpm at 10 min. : \(\sigma' = 1,1 \cdot 10^{-1} \) [S/cm]

at 1Hz conductivity of silicone: \(\sigma' = 3,3 \cdot 10^{-15} \) [S/cm]

CNT-concentration

- Highest conductivity with 5 wt% CNT: \(\sigma' = 9,4 \times 10^{-2} \) [S/cm]
- Percolation threshold \(\phi^* \) at \(~0.9\) wt% CNT
Summary

- Carbon fillers – CB, CNTs, fullerenes, graphenes
- CNT: Low surface energy, high aspect ratio and high specific surface of CNTs - reason of advantage for mechanical and electric properties of composites
- Effective incorporation and dispersion of CNTs in NBR, FKM and EPDM- rubber (TEM, RPA) by melt mixing technology
- High increase in viscosity of uncured compounds by CNT
- Swelling: Filler /polymer interaction: FKM/CNT >> NBR/CNT > EPDM/CNT > NBR/CB N550)
- High reinforcing factors for CNT in comparison to CB, appr. factor 6 to 10 for all systems
- Electrical percolation for CNTs around 1-2 phr range (factor < 5 lower than CB) for melt mixing
- Mixing of low viscous silicone for electrode applications: Special mixing methodology
- Perculation threshold at appr. 0.9 wt.-%, conductivity at 5 wt.-%: 0.1 S/cm
Acknowledgement:
Funded by EU- Eurostar and DLR, !E!7836 NanoGummi

Partners:
• KKT, Osterode
• Nanocyl, Sambreville

Federeal Ministry of Education and Reasearch (BMBF), KMU innovativ - FlowTrode 13GW0050C

Thank you for your attention