Reversibility of the Mullins Effect for Extending the Life of Rubber Components

Matthew Corby and Davide S.A. De Focatiis

Composites Research Group
Faculty of Engineering
University of Nottingham, UK

davide.defocatiis@nottingham.ac.uk
The Mullins effect

Stress-softening phenomenon first observed in the 1940s

Connected with rubber ‘damage’ to

Cross-links

Rubber-filler interface

Filler

Rubber chains

** Effect of Stretching on the Properties of Rubber**

L. Mullins

Research Association of British Rubber Manufacturers, Croydon, England

6 December, 2016

Reversibility of the Mullins Effect for Extending the Life of Rubber Components

Matthew Corby and Davide S.A. De Focatiis
Deformation history affects many aspects of rubber behaviour, such as

- Constitutive response
- Stress-relaxation behaviour
- Swelling behaviour
- Dynamic response

Unintended deformation can change the properties of a rubber component, rendering it unsuitable for its function!

From most practical points of view, this softening is of a permanent nature, for at normal temperatures the recovery towards the initial stress-strain properties is very slow.

Several attempts at speeding up ‘healing’ of the Mullins effect through temperature, starting with

Mullins (1948): “…excessive material degradation when attempting to ‘heal’ rubber at 100°C…”

Annealing cycle may not be a true healing of the Mullins effect, but rather an additional curing cycle from unreacted cross-linker.

In practical terms it has some of the same effects and may be useful in extending the life of overloaded rubber components.
Reversing the Mullins effect

Contents

• Experimental protocols and materials
• Measuring reversal of the Mullins effect
• Time-temperature superposition
• Annealing in vacuum bags and vacuum ovens
• Conclusions
Materials and methods

Sheet-rolled EPDM rubber from JFlex, 0.5mm thick

Dumb-bell specimens cut using a Wallace specimen cutter

Mechanical testing using Instron 5969 and travelling extensometer

Heating cycles using a Memmert programmable oven, a laboratory vacuum oven, and vacuum bags
Reversibility of the Mullins Effect for Extending the Life of Rubber Components

Matthew Corby and Davide S.A. De Focatiis

Measures of reversal of Mullins effect

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Virgin Specimen</th>
<th>Deformed Specimen</th>
<th>Heat Treated Specimen</th>
<th>Deformed + Heat Treated Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secant modulus (MPa, 100% strain)</td>
<td>2.25 ± 0.04</td>
<td>1.17 ± 0.01</td>
<td>2.98 ± 0.01</td>
<td>2.17 ± 0.01</td>
</tr>
<tr>
<td>Energy to deform to 300% (MJ/m³)</td>
<td>10.01 ± 0.07</td>
<td>5.62 ± 0.29</td>
<td>13.44 ± 0.07</td>
<td>10.41 ± 0.27</td>
</tr>
<tr>
<td>Failure strain (%)</td>
<td>671.61 ± 12.45</td>
<td>709.89 ± 3.40</td>
<td>486.93 ± 16.02</td>
<td>548.39 ± 12.26</td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>11.10 ± 0.18</td>
<td>11.39 ± 0.04</td>
<td>11.23 ± 0.47</td>
<td>12.22 ± 0.19</td>
</tr>
</tbody>
</table>

Diagram:

- **σ_max**: Maximum stress
- **ε_max**: Maximum strain
- **S**: Maximum stress point
- **E**: Maximum strain point

Graph showing stress-strain relationship with key points labeled.
Measures of reversal of Mullins effect

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Virgin Specimen</th>
<th>Deformed Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secant modulus (MPa, 100% strain)</td>
<td>2.25 ± 0.04</td>
<td>1.17 ± 0.01</td>
</tr>
<tr>
<td>Energy to deform to 300% (MJ/m³)</td>
<td>10.01 ± 0.07</td>
<td>5.62 ± 0.29</td>
</tr>
<tr>
<td>Failure strain (%)</td>
<td>671.61 ± 12.45</td>
<td>709.89 ± 3.40</td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>11.10 ± 0.18</td>
<td>11.39 ± 0.04</td>
</tr>
</tbody>
</table>

Deformed specimens experienced 4 cycles of 300% strain
Measures of reversal of Mullins effect

<table>
<thead>
<tr>
<th>Material Property</th>
<th>Virgin Specimen</th>
<th>Deformed Specimen</th>
<th>Heat Treated Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secant modulus (MPa, 100% strain)</td>
<td>2.25 ± 0.04</td>
<td>1.17 ± 0.01</td>
<td>2.98 ± 0.01</td>
</tr>
<tr>
<td>Energy to deform to 300% (MJ/m³)</td>
<td>10.01 ± 0.07</td>
<td>5.62 ± 0.29</td>
<td>13.44 ± 0.07</td>
</tr>
<tr>
<td>Failure strain (%)</td>
<td>671.61 ± 12.45</td>
<td>709.89 ± 3.40</td>
<td>486.93 ± 16.02</td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>11.10 ± 0.18</td>
<td>11.39 ± 0.04</td>
<td>11.23 ± 0.47</td>
</tr>
</tbody>
</table>

Deformed specimens experienced 4 cycles of 300% strain

Heat treatment:

Temp = 60, 70, 80°C
Time = 3, 8, 14, 24 hours
Measures of reversal of Mullins effect

#### Material Property	Virgin Specimen	Deformed Specimen	Heat Treated Specimen	Deformed + Heat Treated Specimen
Secant modulus (MPa, 100% strain) | 2.25 ± 0.04 | 1.17 ± 0.01 | 2.98 ± 0.01 | 2.17 ± 0.01
Energy to deform to 300% (MJ/m³) | 10.01 ± 0.07 | 5.62 ± 0.29 | 13.44 ± 0.07 | 10.41 ± 0.27
Failure strain (%) | 671.61 ± 12.45 | 709.89 ± 3.40 | 486.93 ± 16.02 | 548.39 ± 12.26
Tensile strength (MPa) | 11.10 ± 0.18 | 11.39 ± 0.04 | 11.23 ± 0.47 | 12.22 ± 0.19

Deformed specimens experienced 4 cycles of 300% strain

Heat treatment:
- Temp = 60,70,80°C
- Time = 3,8,14,24 hours

\[
R_s = \frac{E_{DH}^{100\%} - E_D^{100\%}}{E_{V}^{100\%} - E_D^{100\%}}
\]
Reversibility of the Mullins Effect for Extending the Life of Rubber Components
Matthew Corby and Davide S.A. De Focatiis

Healing...

...and damage
Time-temperature superposition

Measures of recovery increase with time and temperature

Are they related?

\[R(T, t) = R(T_0, a_T t) \]

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Shift factor (a_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.59 ± 0.03</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>1.53 ± 0.03</td>
</tr>
</tbody>
</table>
Shift factors obey an Arrhenius relationship

$$\log_{10}(a_T) = \frac{\Delta H}{2.303R} \left(\frac{1}{T} - \frac{1}{T_0} \right)$$

$$\Delta H = 46.8 \pm 3.5 \text{ kJ/mol}$$

In line with typical ΔH values for EPDM curing
e.g. 46.4kJ/mol (Fathurrohman e al (2015), Bull Chem React Eng & Catalysis 10(2) pp104-110)
Applying TTS to other measures

Energy needed to deform to 300% strain

Energy Recovery, R_E (%) vs. $\log(t \cdot a_T)$

- $60^\circ C$
- $70^\circ C$
- $80^\circ C$

$T_{\text{ref}} = 70^\circ C$
Applying TTS to other measures

![Graph showing failure strain vs. log(t ⋅ a_T). The graph includes data points for different temperatures: 60°C (diamonds), 70°C (squares), and 80°C (triangles). The line at the top represents the virgin state, with T_ref = 70°C.](image)

- **Failure strain**
- **Virgin line**
- **T_ref = 70°C**

Reversibility of the Mullins Effect for Extending the Life of Rubber Components

Matthew Corby and Davide S.A. De Focatiis
Applying TTS to other measures

Tensile strength

Tensile Strength (MPa)

- 60°C
- 70°C
- 80°C

Virgin

$T_{ref} = 70°C$

$T_{ref} = 70°C$

Tensile strength

$log(t.a_T)$

6 December, 2016
‘Healing’ or more cure?

Is it ‘healing’ or new cross-linking?

Evidence for cross-linking:

- Activation enthalpy is in line with typical enthalpy of cure

- Changes to tensile strength and failure strain (beyond the preconditioning strains)

ΔH = 46.8 ± 3.5 kJ/mol

ΔH EPDM curing: 46.4kJ/mol
(Fathurrohman e al (2015))
‘Healing’ or more cure?

Is it ‘healing’ or new cross-linking?

Evidence for Mullins healing:

Monitored ‘permanent’ set by tracking lines on specimens before and after deformation, and after annealing.

As specimen is not under load when annealed, new cross-links should not significantly affect its length!

Permanent deformation recovers after the heating cycle.

Both ‘healing’ and cross-linking are taking place!
Several studies employed vacuum ovens to reduce material degradation. For example, Bueche (1961), Harwood et al. (1966), Laraba-Abbes et al. (2003).

Vacuum ovens are not readily available in industry and require longer procedures to evacuate air.

Vacuum bagging may be more practical.

- Standard oven, specimen exposed
- Specimen vacuum-bagged and heat-treated in standard oven
- Laboratory vacuum oven, specimen exposed
Heat treatment at 70°C for 24 hours

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Secant Modulus Recovery (%)</th>
<th>Energy Recovery (%)</th>
<th>Tensile Strength (Mpa)</th>
<th>Failure Strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgin</td>
<td>-</td>
<td>-</td>
<td>11.10 ± 0.18</td>
<td>671.6 ± 12.4</td>
</tr>
<tr>
<td>Standard Oven</td>
<td>57.67 ± 3.09</td>
<td>69.48 ± 9.23</td>
<td>12.14 ± 0.20</td>
<td>608.0 ± 15.1</td>
</tr>
<tr>
<td>Vacuum Bag</td>
<td>53.93 ± 4.07</td>
<td>63.71 ± 8.76</td>
<td>12.05 ± 0.23</td>
<td>600.5 ± 18.9</td>
</tr>
<tr>
<td>Vacuum Oven</td>
<td>62.11 ± 2.69</td>
<td>80.02 ± 10.79</td>
<td>11.82 ± 0.28</td>
<td>592.5 ± 12.1</td>
</tr>
</tbody>
</table>

Results suggest marginally greater recovery in vacuum oven but not in vacuum bag

On the whole, results are within measurement accuracy – no significant difference
Conclusions

• Experimentally measured the effects of heat treatments on mechanical properties of deformed EPDM rubber to reverse the Mullins effect

• Recovery is time and temperature dependent, and follows TTS with an Arrhenius temperature dependence ($\Delta H=46.8\text{kJ/mol}$) – same as cure ΔH

• Secant modulus and energy to deform can be recovered with very small changes to stress and strain to failure

• Evidence suggests that reversal of Mullins effect is simultaneous ‘healing’ and new cross-linking

• Could not observe significant differences when annealing in either a vacuum bag or a vacuum oven
TTS of permanent set

![Graph showing the relationship between log(\(a_Tt\)) and permanent set recovered (%). The graph includes data points for 60°C, 70°C, and 80°C.](image-url)