Greener and stronger - new biopolymer, "Floreon", developed

Packaging Professional magazine
,
27 May 2012
Biopolymer bottle in grass

A biopolymer blend has been developed that provides improved mechanical and processing properties over PET. The material can be used in widespread applications, but is primarily aimed at the packaging industry. Professor Alma Hodzic from the University of Sheffield reports.

A new fully bio-based, naturally biodegradable biopolymer that could replace PET in packaging has been invented. Consisting of 90% polylactic acid (PLA), the naturally biodegradable biopolymer has excellent mechanical and physical properties. The synthetic thermoplastic polyester is used primarily for packaging applications such as bottles and films. It is produced from sustainable (plant) feedstock, has a lower carbon footprint and uses less non-renewable energy than any mineral thermoplastic, including 100% recycled polyethylene terephthalate (PET).

The new biopolymer can be used for films, pots and trays in the food industry as well as applications in cleaning and office products because its appearance can be tailored and either translucent or coloured. It is especially suited to complex shapes as the forming does not interfere with the colour or transparency. In principle, PLA can be recycled either by thermoplastic methods or by hydrolytic cracking back down to monomer, although this process is still in development. Furthermore, the original commercial strength of PLA is retained in the new product’s biodegradation through a two-stage process consisting of hydrolysis to low molecular weight oligomers, followed by complete digestion by micro-organisms.

At room temperature, PLA has high modulus and strength but poor toughness. This is largely due to its glass transition point, which lies between 50°C and 60°C. In certain applications, this presents further problems due to deformation and loss of strength under storage conditions in warmer climates. With the aim of producing a tougher, commercially viable thermoplastic that is still biodegradable, various approaches have been examined based on thermoplastic compounding or blending. The majority of work on PLA nanocomposites has focused on improving strength and modulus. However, for many thermoplastic applications this may not be required.

Two common naturally biodegradable polymer additives constitute 10% of the blend for the new biopolymer – called Floreon – providing the base polymer with enhanced ductility, toughness and thermal resistance. These properties are achieved through careful selection of molecular weights in the additives, allowing the formation of the phase-separated nanocomposite during melt compounding of the blend. The additives are dispersed throughout the base biopolymer with a degree of phase separation, to form energy-absorbing nanoglobules in a modified matrix. This allows improved performance without changes in the chemistry of its constituents.

Standard PLA may deform above 40°C and lose aesthetic appeal, preventing the biopolymer from being widely adopted for standard packaging. Some attempts have been made to use PLA in bottle applications. However, success has been limited because the bottle needs to be refrigerated and the high cost of raw materials has meant a high overall cost.

Improved production

One of the main advantages of the material is its lower processing temperatures compared to polymers with similar mechanical properties, thus lowering costs. Floreon is produced by twin-screw melt extrusion of PLA and the additives into standard-size pellets, and can be further processed by applying any standard thermoplastic-forming technique around the softening region between 70°C and 105°C. This means that existing production lines can be used, such as those used for PLA, and does not require any additional manufacturing.

Strength and ductility are the main advantages of the new biopolymer, which translate into the nanocomposite being slightly more flexible compared to PLA. It can also be used at higher environmental temperatures, and does not require refrigeration, although it can be stored at low temperatures, and can be handled and packaged like all similar polymer products.

The main scientific problem of this project was to produce a fully biodegradable material that saves on processing energy and retains translucency despite its complex microstructure. The behaviour of bio-based materials during the processing conditions can be quite challenging compared to synthetic polymers.

Dr Peter Bailey, Project Manager, experimented with numerous combinations of biopolymer blends in the laboratories of the Composite Systems Innovation Centre at the University of Sheffield. Although many selected biopolymer additives enhanced toughness and crystallisation of PLA, a particular combination of three polymers with specific molecular weight distributions showed outstanding performance in processability, as well as finished properties, that led to the formation of the new polymer blend. Although there is much work still to do, Dr Bailey commented, ‘Floreon is a material with great potential, and we are now running production trials to bring a wide range of applications to market’.

A new phase of the project will see work to increase the gas barrier properties of the biopolymer and expand its range of applications in food packaging.

End of life

As with all naturally biodegradable materials, Floreon can only biodegrade once in contact with soil. In some cases, a slight increase in opacity can be noticed after some time, however, this does not influence the quality of the material.

Compared to PET, the new product has 46% lower energy consumption in the raw material production. With basic recycling, the material is collected, cleaned and melted down into new bottles. With full recycling, the material is collected, cleaned and broken down into its component parts to make brand new PLA. Depending on the soil temperatures, it can completely disintegrate in fewer than two months and fully biodegrade within six months. The bacteria responsible for biodegradation have the optimum metabolitic activity between 30°C and 55°C, but the material will biodegrade slower at lower temperatures.

Various bioplastics are already being used in thin film applications and their size of the overall market in 2010 was 12% of their oil-based counterparts. This market share is expected to grow to 25% by 2020, mainly due to the improvement in biopolymer manufacturing technology, price reduction and the expansion of innovations such as rigid packaging and loaded components. Furthermore, the incentives that promote high calorific-value, bio-based materials into waste for energy have secured another waste management option at the beginning of the new cycle where some composting plants may not yet be geared for biopolymers composting.

Further information

a.hodzic@sheffield.ac.uk