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Outline
• Extreme Environments in Air Force Applications 
• Elastomeric Materials

• Dynamics of energetic materials
• Shock mitigating systems 
• Novel applications 

• Closing Thoughts & Acknowledgements  
• Discussion
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Air Force Applications: 
Extreme Environments
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Air Force Weapons: Extreme Operating Environments
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Multiaxial Dynamics 

• Linear triaxial data
• Aspects of environment: 

• Multiaxial…
• Repeated loading…
• High rate…
• Broadband… 
• Stochastic!
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Representative Sled Test Data
Similar to video on previous slide

Resultant acceleration “lissajous”
Vector triaxial accelerometer data from full-

scale penetration event



From Bad to Worse… 
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Dynamics of 
Elastomers for 

Energetic Materials
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Motivation: Dynamic Response of Energetic Composites
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Complex Multiscale Structure of Military Systems
Dynamic response can be considered in multiple ways: 
• “Top-Down” or “Bottom-Up”
• Multiple length & time scales
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BLU-109/B
Penetrating 

Warhead

Warhead schematic 
cross-section from 
globalsecurity.org 

System

Material

SEM 
image of 
Sn-Pb

solder [1]

[1] Siviour, C. R., Walley, S. M., Proud, W. G., and Field, J. E., 2005, "Mechanical properties of SnPb
and lead-free solders at high rates of strain," Journal of Physics D: Applied Physics, 38(22), p. 4131.
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Wave Propagation in Viscoelastic Media
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Stress-Strain Relation for 
Viscoelastic Materials

Frequency Domain

𝜎𝜎 𝑡𝑡 = �
0

𝑡𝑡

𝑌𝑌 𝑡𝑡 − 𝜏𝜏
𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝜏𝜏

𝑑𝑑𝜏𝜏 ,

�𝐸𝐸∗ 𝜔𝜔 = 𝑖𝑖𝜔𝜔 �𝑌𝑌 𝜔𝜔 = �𝐸𝐸′ 𝜔𝜔 + 𝑖𝑖 �𝐸𝐸′′ 𝜔𝜔

�𝜎𝜎 𝜔𝜔 = �𝐸𝐸∗ 𝜔𝜔 ̃𝑑𝑑 𝜔𝜔

Complex Stress-Strain

�𝐸𝐸∗
𝜕𝜕2 ̃𝑑𝑑
𝜕𝜕𝑥𝑥2 + 𝜌𝜌𝜔𝜔2 ̃𝑑𝑑 = 0.

1D* Equation of Motion

𝛾𝛾 𝜔𝜔 ≡ 𝑖𝑖𝜔𝜔
𝜌𝜌
�𝐸𝐸∗

, 𝛾𝛾(𝜔𝜔) = 𝛼𝛼(𝜔𝜔) + 𝑖𝑖𝑖𝑖(𝜔𝜔)

̃𝑑𝑑 𝑥𝑥,𝜔𝜔 = �𝑃𝑃 𝜔𝜔 𝑒𝑒−𝛾𝛾(𝜔𝜔)𝑥𝑥 + �𝑁𝑁 𝜔𝜔 𝑒𝑒𝛾𝛾 𝜔𝜔 𝑥𝑥

Bonakdar, M., Seidel, G.D., Inman, D.J., Damping characterization of viscoelastic composites using a micromechanical approach, Behavior of Mechanics of 
Multifunctional Materials and Composites 2011, Proc. of SPIE Vol. 7978, 797810

Attenuation 
Coefficient Wavenumber

Frequency domain formalism has significant 
advantages for wave-based sensing, etc.: 
but what about the materials properties?* Similar results for axisymmetric 3D



Wave-Based Estimation via “Direct” Impact Test
• Pseudo-direct impact SHPB apparatus
• Solve coupled equations for embedded 

strain gages 
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𝛼𝛼 𝜔𝜔 = −
1
∆𝑥𝑥 ln 𝑅𝑅(𝜔𝜔)

𝑖𝑖 𝜔𝜔 =
𝜙𝜙 𝜔𝜔
∆𝑥𝑥

Very High Attenuation
(Infinite Bar Assumption)

̃𝑑𝑑 𝑥𝑥1,𝜔𝜔
̃𝑑𝑑 𝑥𝑥0,𝜔𝜔 = 𝑅𝑅 𝜔𝜔 𝑒𝑒−𝑖𝑖𝑖𝑖(𝜔𝜔)

Attenuation 
Coefficient

Wavenumber
(propagation 

constant)

Lundberg, B. and R.H. Blanc, Determination of mechanical material properties from the two-point response…. Journal of Sound and Vibration, 1988. 126(1): p. 97-108.
Bacon, C., An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Experimental Mechanics, 1998. 38(4): p. 242-249.

Incident bar Transmission bar
j=1

𝑃𝑃1 ,𝑁𝑁1 𝑃𝑃2 𝑁𝑁2 → 0

BC2 - velocity
BC3 - force

𝑥𝑥 = 𝐿𝐿1𝑥𝑥 = 𝑋𝑋1
B

C1
𝑥𝑥 → ∞

Output Strain Gages
j=2

𝑥𝑥 = 𝑋𝑋2 𝑥𝑥 = 𝑋𝑋3



Experimental Setup

• Incident Bar: Hollow Aluminum
• Transmission Bar: Polyurethane
• Instrumentation:

• Strain gages, embedded 
accelerometers, LDV
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Data & Analysis
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• Observed strain agrees 
with acceleration 

• High attenuation = 
low signal 

• Data noisy
• Wave speeds within 

expectation 
• Strain used as boundary 

conditions for estimating 
1-D propagation 
behavior

• Next slide
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Complex Properties
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• Model-based estimation using moduli 
1. Freq-independent 

2. Linear wrt freq.

• Linear model better fit
• Higher order or nonlinear: 

improved results?
• Next steps: 

• Comparison of dynamic complex elastic moduli with other test methods (e.g. DMA)
• Global optimization of moduli with multiple random initial conditions 
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Strain vs. Time in Polyurethane Bar (x = 77 in)

𝐸𝐸∗ 𝜔𝜔 = 𝐴𝐴1 + 𝐴𝐴2𝑖𝑖
𝐸𝐸∗ 𝜔𝜔 = 66.9 + 0.140 𝑖𝑖 MPa

𝐸𝐸∗ 𝜔𝜔 = (𝐴𝐴1+𝐴𝐴2𝜔𝜔) + (𝐴𝐴3+𝐴𝐴4𝜔𝜔)𝑖𝑖
𝐸𝐸∗ 𝜔𝜔 = 15.5 − 0.0049𝜔𝜔 +

(1.21 + 0.00314𝜔𝜔)𝑖𝑖 MPa



FY19 MURI Topic 24:  Microstructurally-Aware Continuum Models 
for Energetic Materials 
• Objective: 

• Transform current continuum models by incorporating microstructural features 
together with mechanical and chemical energetics, to predict & validate predictions 
for continuum-level shock to detonation transition in energetic materials with a range 
of microstructures.

• Research Concentration: Develop validated continuum models that
• Incorporates microstructural features and their distributions, 
• Contains mechanical energy localization, chemical energy release rates that lead to 

detonation, 
• Accounts for uncertainty (e.g., from microstructural variation & computational 

methods), and
• Provides a balanced effort that culminates with hydrocode integration.
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US MURI Team
• PI: Tommy Sewell (U of Missouri)
• Goal: A machine-learned, microstructure-informed 

surrogate surface for energy localization (MISSEL)
• MISSEL will be used to predict the response of energetic 

materials for loading conditions ranging from weak impact 
to strong shocks, including corner turning & re-shock.

• James convex hull, go/no-go under impact loading
• Pop plot under shock loading 

• Materials:
• HMX, PDMS and HTPB binders
• Micro-structures of pressed HMX & other PBXs

• Fundamental science and engineering deeply augmented 
& integrated via machine learning
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MURI Effort Organized into Three Integrated Tasks
• Task 1: Micro-scale

• Sewell (lead), Dlott, Chaudhuri, Picu
• Task 2: Meso-scale

• Picu (lead), Tomar, Udaykumar
• And the rest of the team!

• Task 3: Macro-scale
• Udaykumar (lead), Sun, 

Picu, Dlott
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Shock Mitigation
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State of the Art in Shock Mitigation
Classes (by dissipation mechanism)
• Mechanical deformation

• Automotive “crumple zones”

• Constrained layer damping
• Woodpecker skull (biomimetic) [1]

• Energy localization
• Functional polyurea nanoparticles [2]

• Viscoelastic/viscoplastic
• Polysulfide-isolated mount [3]

• Superelastic
• NiTi shape memory alloy [4]

• Multilayered mechanical filter 
• Metal & polymer “bandstop” filter [5]
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[1] Yoon, S.-H., and Park, S., 2011, "A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems," Bioinspiration & Biomimetics, 6(1), p. 016003.
[2] Holzworth, K., Williams, G., and Nemat-Nasser, S., 2012, "Hybrid Polymer Grafted Nanoparticle Composites for Blast-induced Shock-wave Mitigation," Proc. SEM International Conference & Exposition on Experimental and Applied Mechanics, 

Costa Mesa, CA.
[3] Bateman, V. I., Brown, F. A., and Nusser, M. A., 2000, "High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6," Report SAND2000-1528 Sandia National Laboratory 
[4] S. Nemat-Nasser and W.-G. Guo, 2006, “Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures”, Mech Materials 38, pp 463-474.
[5] N.A. Winfree et al, 2010, “Mechanical filter for sensors”, US Patent 7706213

Woodpecker brain isolation [11]

Polysulfide filter [13]



Metamaterials & Related Metastructures
• Metamaterials [1]

• Definition: Engineered materials designed w/properties not occurring naturally
• “Effective” macroscopic properties strongly dependent on (nano-/micro-) 

structure & material (vs. “unobtainium”) 
• Phononic Crystals (PC)/Band Gap (PBG) Materials

• Definition:  Artificial periodic (crystalline) composites where structure 
influences wave propagation [2]

• Interactions: Bragg (lattice) + Mie (geometric) scattering
• Generally constant “single scatterer” assumption

• Acoustic Band Gap (ABG) Materials
• Definition:  Composite materials with  defined band baps in or near the acoustic range (~20 

Hz to 20 kHz)
• Interactions: Elastic wave propagation + Bloch periodicity (pressure)

• Superlattices (SL)
• Definition: Multilayered periodic heterostructures (i.e., a microstructure with different 

materials) made of thin crystalline films, 
• Individual film thicknesses ranging from less than 1 nm to over 100 nm
• Period:  Characteristic pattern of crystalline films (e.g., a pair of different films called a 

“bilayer”) that is repeated many times
• Interactions: Phonon (elastic) propagation on lattice (band-folding, scattering)
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[1] Shelby, R. A., Smith D.R., Shultz S., and Nemat-Nasser S.C., 2001, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial”, Applied Physics Letters 78 (4), pp. 489-491.
[2] Lu, M.-H., Feng, L., and Chen, Y.-F., 2009, "Phononic crystals and acoustic metamaterials," Materials Today, 12(12), pp. 34-42.
[3] Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., and Sheng, P., 2004, "Focusing of Sound in a 3D Phononic Crystal," Physical Review Letters, 93(2), 024301.
[4] Vasseur, J. O., Deymier, P. A., Khelif, A., Lambin, P., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L., Fettouhi, N., and Zemmouri, J., 2002, "Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study," Physical Review E, 65(5), p. 056608.

Split Ring Resonators [1]

3D acoustic wave focusing [3]

Acoustic 
band 

structure 
[4]



Sample of Metamaterials Work
First 

Author Year Materials/
Geometry N-D

Feature Size
r or l
[m]

Lattice 
Spacing

a
[m]

Freq Range/
Bandwidth

Δω
[Hz]

Notes/Comments Ref.

Liu 2000 Cubic array of Pb/silicone spheres 3D ~5 mm 30 mm 250 to 2k [5]

Vasseur 2002 Square planar array of filled/hollow 
Cu tubes in air 2D 14 mm 30 mm 0 to 50k [4]

Tanaka 1999 Square lattice of AlAs cylinders in 
GaAs matrix 2D A

(arbitrary)
a

(arbitrary)
~ a/ν

(normalized)
Surface acoustic wave 
(SAW) theory [6]

Pennec 2004 Square planar array of steel tubes 
w/air, Hg in air 2D 0.9-1.4 mm 5 mm 0 to 300k ABG w/ tunability and 

multiplexing [7]

Tang 2004 Thin film sandwiches w/ 
electrorheological material 1D 0.1 mm 0.1 mm 80 to 200 Simple transmission

experiments [8]

Dhar 1999 Lithographically patterned Al film 
on glass substrate 1D ~1 μm 3-3.75 μm 100-800 MHz Measured w/ ps transient 

grating [9]

Yang 2004 FCC cubic array of WC beads in 
water 3D 0.4 mm 0.8 mm 0.98-1.2 MHz 3-D focusing of waves [1]

Lu 2009 (Review article) Review article (PC and 
AMM) [2]
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[5] Liu et al., 2000, “Locally Resonant Sonic Materials,” Science 289 (5485), pp 1734-1736.  
[6] Tanaka, Y., and Tamura, S.-I., 1999, “Two-dimensional phononic crystals: surface acoustic waves,” Physica B: Condensed Matter 263-264, pp. 77-80.
[7] Pennec, Y., Djafari-Rouhani, B., Vasseur, J. O., Khelif, A., and Deymier, P. A., 2004, "Tunable filtering and demultiplexing in phononic crystals with hollow cylinders," Physical Review E, 69(4), p. 046608.
[8] Hong, T., Chunrong, L., and Xiaopeng, Z., 2004, "Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves," Journal of Physics D: Applied Physics, 37(16), p. 2331.
[9] Dhar, L., and Rogers, J. A., 2000, "High frequency one-dimensional phononic crystal characterized with a picosecond transient grating photoacoustic technique," Applied Physics Letters, 77(9), pp. 1402-

1404.

Top right images from M. Maldovan, “Sound and Heat Revolutions in Phononics,” Nature, 503, p. 209-217 (2013).



(1) Generalized from several open literature values for PBX-9501 properties
(2) K. Ravi-Chandar and S. Satapathy, 2006, “Mechanical Properties of G-10 Glass–Epoxy Composite”, 

Institute for Advanced Technology, The University of Texas at Austin, IAT.R 0466

Wave Properties in Various Media

Material
Elastic Modulus

E
[GPa]

Density
Ρ

[kg/m3]

1-D Impedance
Z” = Z/A

[x 106 kg/m2s]

1-D Wave Speed
c

[m/s]

6/4 Titanium 104 4420 21.4 4840

Maraging Steel 188 8080 39.1 4835

Tungsten 329 16920 75.3 4406

Copper 115 8960 32.1 3583

Polycarbonate 2.3 1200 1.86 1550

Epoxy 2.3 1140 1.62 1420

PVC 1.6 1380 1.48 1077

PBX(1) ~0.5 
(0.1-2.9+) ~1800 1.89 527

G10(2) ~18.8 (x)
~7.8 (z) ~1700 5.64 (x)

3.64 (z)
3320 (x)
2140 (z)

CFRP ~1.5 ~1500 1.50 1000
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Frequency
f

[Hz]

Wavelength 
λ

[m]

1 4800
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Frequency
f

[Hz]

Wavelength 
λ

[m]

1 1077

100 1.1

10k 0.11

1M 1.1m

100M 11m

Z = F/v = ρAc

c =√E/ρ=fλ
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Hussein, M.I., Hamza, K., Hulbert, G.M., Scott, R. A., and K. Saitou, “Multiobjective
evolutionary optimization of periodic layered materials for desired wave dispersion
characteristics,” Structural and Multidisciplinary Optimization, 31, p. 60-75 (2006).

Initial Shock “MetaFilter” Design Optimization Problem
• Design goals/objectives:

• Spectral energy isolation 
(transmission rejection ratio)

• Minimum complexity (Nlayers, Lsystem)
• Constraints:

• Discrete material set 
(non-continuous property variables)

• Defined layer pattern
• Constant layer sizing (LA, LB)

• Initial guess:
• Polysulfide/steel stack

• Method: 
• Heuristic discrete genetic algorithm w/

local gradient-based improvement
DSITRIBUTION A.  Approved for public release; distribution unlimited.

Incident bar Transmit barSample
i s t

Pi, Ni

Ps, Ns

Pt, Nt

𝑡𝑡12(𝜔𝜔) =
𝜎𝜎1(𝜔𝜔)
𝜎𝜎2(𝜔𝜔)

 𝜏𝜏12 =
transmitted vibrational power 

incident vibrational power
 ∝ 𝑡𝑡12

2  

Incoming
wave

Outgoing
waveMetaFilter



Theoretical Framework
• Transfer matrix method:

• Assume infinitely periodic layered material consisting of a repeated unit cell
• Solve elastodynamic equation for the unit cell consisting of n layers
• Use periodicity of the material to compute band structure
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Mahmoud I. Hussein, Gregory M. Hulbert, and Richard A. Scott, “Dispersive elastodynamics of 1D banded materials and structures: analysis”, Journal of Sound and
Vibration 289 (2006) 779–806

Unit Cell

HDPE and Aluminum 
MetaFilter

10 layer unit cell of HDPE & Al 
layers (thickness ~1 mm)

Calculated band diagram



Incident(Exp) 
Transmission(Exp) 

Transmission(Theory)

Shock MetaFilter: Predictions & Observed Response
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Incident(Exp) 
Transmission(Theory)
4 Layer Unit Cell

HDPE and Aluminum

d=6.3mm

HDPE and Steel

d=6.3mm



Further studies 
• Validate 1-D elastodynamic response
• Add more complex material response

• Inelasticity
• Constitutive parameters (rate, temp., pressure)
• Frequency-dependence 

• Include uncertainty (robust estimation) 
• Exploit dimensionality & scale  “architextured” materials 
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Linear Nonlinear Rate-Dependent

𝛼𝛼 𝜔𝜔 = −
1
∆𝑥𝑥 ln 𝑅𝑅(𝜔𝜔)

𝑖𝑖 𝜔𝜔 =
𝜙𝜙 𝜔𝜔
∆𝑥𝑥

1-D

2-D

3-D

[1] H. Wadley, K. Dharmasena, Y. 
Chen, P. Dudt, D. Knight, R. 
Charette, and K. Kiddy, “Compressive 
response of multilayered pyramidal 
lattices during underwater shock 
loading”, International Journal of 
Impact Engineering 35 (2008) 1102–
1114

N-D



Other Novel 
Applications
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Flexible Materials and Processes at AFRL

(Flexible ICs, Energy Storage, Stretchable Conductors)

(Printed Electronics, Topology Optimization, AI/ML)

Printed Flexible Antennas

Flex hybrid Arduino

Human Performance 
Monitoring

Conformal 
Electromagnetics

Next-Generation Materials

Advanced Manufacturing

Distribution A: Approved for Public Release: 88ABW-2019-1497 



Controlling Mechanical Wave Propagation Critical to Air Force 
Battlefield Acoustics NDE/ Ultrasonic Imaging

Vibration ControlMunitions

Aeroacoustics
Science, v 343, n 6170, p 516-19 (2014) Proc. of the Royal Society A, v 471, n 2177, (2015) Nature Physics, v 7, n 1, 52-5, (2011)

Advanced Engineering Materials, v 20, n 5, (2018) PNAS, vol. 113 (30), p. 8386-8390, (2016)

But all current solutions 
are parasitic and add 
weight and volume!

Current material 
solutions are diverse due 
to different environment/ 
frequencies.
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Hyperelastic Magneto-responsive Material Model
0 0.04 0.06 0.12 0.7 T

1.1 T

Jian Li & Stephan Rudykh (Technion/UWis-Mad)

Applied 
Field2a

t
Applied 
Strain

Fixed Field 
Tuning

Fixed Strain
Tuning

1.0 0.97 0.94 0.91 0.88 0.85
Stretch Ratio, λ

Stretch ratio = specimen 
height under strain/ original 
unconstrained height

N
or

m
al

iz
ed

 b
ul

ki
ng

 a
m

pl
itu

de

Two tuning mechanisms:
Model Predictions: 
1. Applied field induces 

critical buckling at lower 
strains

2. Applied strain increases 
the amplitude of buckled 
pattern
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Self-healing Electronics
• Impact triggered conductivity
• Damage resistant circuits

Thin 
Oxide Shell

Liquid 
Metal Core

Adv. Mat. Inter, 2017
Langmuir, 2018
JPCC, 2018
Nanoscale, 2019

Printing

Switching Reconfigurable 
Electronics
• DC – RF Devices
• Tunable Antennas, 

Switches

Ultra-stretchable 
Electronics
• Airman/machine 

interfaces
• Conductive hinges

Embedded Antennas

Adv. Mat. Inter, 2016
JMM, 2016
Langmuir, 2016
IEEE-AP&S Proc,. 2017
Adv. Ele. Mat, 2018
IEEE-IMS, 2019

Connections

Control / Design

ACS Colloids and Interfaces, 2018
Adv. Eng. Mat, 2019
Adv. Eng. Mat, 2019
Adv. Mat, 2019

Integration

Poly-LMNs

Responsive Liquid Metal Electronics
Group Overview
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Stable Resistance (R/R0 < 1.5 over 10k cycles)

Polymerized Liquid Metal Networks (Poly-LMNs)

Step 1: 
Fabricate

Ink

Step 2: 
Print Ink

Step 4: Strain “Activate”

Key Performance Parameters
• Intrinsically high conductivity: σ ~ 20,000 S/cm @ 700% strain
• Consistent resistance during strain: R/R0 < 1.8 @ 700% strain
• Facile processing: photo-patterning, thermal curing, 3-D printing
• Stable performance: 10k cycles @ 300%

Applied Strain

Patents Pending: 62754624; 62754635;     
Thrasher et al, Adv. Mat, Vol 31 (40), 2019

Liquid Metal Core Step 3: Cross-link Particles

Metal Oxide Shell

Stretchable Conductors
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Final Thoughts
Conclusion
• Defense applications are very 

demanding:
• Complex systems 
• Extreme operating environments
• Long operational lifetimes  

• AFRL has many different research 
interests in elastomeric dynamics…

• Energetic materials
• Shock isolation systems 
• Architected materials 

• Much work remains in all of these areas 
and more…
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“Blue Sky”vs.

Future Research Trends 
• Emphasis on adaptive, reconfigurable 

systems 
• Also trend towards expendable/attritable

“good enough” systems 
• Move away from “exquisite” solutions 

• Flexible electronic materials, biomaterials 
• 3D/4D-printed functional materials
• Tightly integrated lifecycle: 

• Co-design of materials & systems
• Digital manufacturing (thread, tapestry) 
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– Werner Von Braun

“ Basic research is what I am doing
when I don't know what I am doing. ”

“ Opinions, interpretations, conclusions, equipment selection, and recommendations are 
those of the authors and are not necessarily endorsed by the United States Air Force. ”



Questions?
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Contact Information:

• Jason R. Foley, Ph.D.
International Project Officer, Materials & Physics
European Office of Aerospace Research & Development (EOARD)
Air Force Office of Scientific Research 
U.S. Air Force Research Laboratory

• Phone: +44 (0)1895-616010   (DSN: 314-235-6010)
• Email:  jason.foley.1@us.af.mil 
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