A new rule of mixtures for natural fibre composites

Amandeep Virk (Enbridge), John Summerscales (PU) and Wayne Hall (GU)

Outline of the talk

- mechanical testing of jute fibres
 - effect of fibre length and diameter
- fibre cross-sections
 - fibre area correction factor
- rules of mixture (RoM)
- mechanical testing of composites
- do the new RoM work?

Natural fibres

- tensile properties characterised for retted technical jute fibres from a 127 mm wide roll with an areal weight of 880 g/m² from a single source in South Asia
- 785 individual fibres tested:
 - 100 fibres at each of 6, 10, 20, 30 and 50 mm GL
 - 50 fibres at each of 100, 150, 200, 250 and 300 mm GL
- fibre length distribution from ISO 6989 'Method A'
- apparent cross-sectional area of each fibre from the mean fibre 'diameter' assuming a circular cross-section

Mechanical testing of fibre

- Fibres tested in tension using an Instron 3345 K1669 universal testing machine with an Instron 500 N load cell
- Grafil method 101.13, modified for different fibre lengths (broadly similar to ASTM D3379-75)

constant strain rate of 0.01 min⁻¹ for all gauge lengths

Effect of fibre length

Plots of ...

- strength (MPa)
- strain (%)
- coefficients of variation (CoV)
 - normalised measure of dispersion of a probability distribution
 - CoV = standard deviation/mean value

Fibre strength against mean fibre length

- as gauge length increases, fibre strength decreases
- longer fibre more likely to have a critical defect

Fibre fracture strain against fibre length

fracture strain is strongly influenced by the fibre length

Linear trend line through CoV for strength or for fracture strain

CoV of fracture strain consistently lower than CoV of strength at each of the measured fibre lengths

Effect of fibre diameter

Plots of ...

- strength (MPa)
- strain (%)
- coefficients of variation (CoV)
 - normalised measure of dispersion of a probability distribution
 - CoV = standard deviation/mean value

Grouping fibre diameter data

- fibre gauge length can be selected for size
- fibre diameter is an independent variable which cannot be selected
- to determine the effect of the fibre diameter on strength and fracture strain the fibre diameter is grouped in classes (bins)
- bin width of 10 µm is chosen for the fibre diameter
- resulting groups used in the following Figures

Fibre strength against fibre diameter group

Fracture strain against fibre diameter group.

Strength or fracture strain CoV against fibre diameter

Variability - conclusions

- NF have perceived high variability in strength.
- coefficient of variation (CoV) for failure strain is consistently lower than CoV for fracture stress (strength)
- failure strain is the more consistent failure criterion

... but fibre CSA not round

- fibre sits on test card with low centre of gravity
- optical microscopy to determine fibre "diameter"
- cross-sectional area (CSA) is not round
- strength is normally calculated using assumed CSA based on an "apparent" diameter
- the CSA is overestimated
 - so modulus and strength are low
- strain is independent of CSA

... but fibre CSA not round

typical cross-sections of jute technical fibres

Apparent and true fibre area distributions

Geometric means of the log normal distributions calculated
Apparent and true fibre CSAs to be 2697 and 1896 µm² respectively.
Apparent CSA is overestimate, so fibre modulus and strength underestimated

Fibre area correction factor k

- FACF compensates for overestimate in apparent CSA
- FACF calculated as the ratio of apparent CSA/true CSA
- For the jute fibre considered here,
- κ = 1.42 (i.e. 2697/1896)

Fibre diameter distribution factor:

Young's modulus of jute fibres reduces with increasing fibre diameter

Standard rules of mixtures

•
$$E_c = \eta_I \eta_o V_f E_f + V_m E_m$$

•
$$\sigma'_c = V_f \sigma'_f + V_m \sigma_{m*}$$

•
$$V_f + V_m + V_v = 1$$

Modified rules of mixtures

•
$$E_c = \kappa \eta_d \eta_l \eta_o V_f E_f + V_m E_m$$

•
$$\sigma'_c = \kappa V_f \sigma'_f + V_m \sigma_{m*}$$

```
\kappa = fibre area correction factor = 1.42

\eta_d = fibre diameter distribution factor = 1.00

\eta_l = fibre length distribution factor = 1.00

\theta = mean fibre angle = 7.4 ± 18°

\eta_o = fibre orientation distribution factor = 0.81 ± 0.06

V_f = fibre volume fraction = 18.9 ± 3.9 %
```

Quasi-UD jute/epoxy composite

Cross-section (top): used to determine fibre volume fraction
Plan view (bottom): used to determine FODF for dyed/pigmented plate

Results for quasi-UD composites

- average tensile modulus (dyed): 8.18 ± 0.6 GPa
- average tensile modulus (un-dyed): 8.47 ± 1.18 GPa
- calculated modulus: 8.24 \pm 0.57 GPa
- average tensile strength (dyed): 100.0 ± 5.7 MPa
- average tensile strength (un-dyed): 101.0 ± 17.2 MPa
- calculated strength (new RoM/MDS-WLS): 95.0 MPa
- calculated strength (new RoM/NLIM): 102.9 MPa

MDS-WLS: multiple data set weak link scaling

NLIM: natural logarithm interpolation method

Conclusions — new RoM

- using linear measurements of fibre diameter and assumed circular cross-section overestimates CSA
- hence low values of key mechanical properties

 (i.e. modulus and strength) of natural fibres or composites
- FACF and FDDF proposed for use in RoM to predict the tensile modulus and strength of NF composites
- FACF shown to improve the prediction of tensile modulus and strength for the authors' and other experiments reported in the literature.

Acknowledgements

- The authors would like to thank a former colleague,
 Joe Ellison, for obtaining the fibres from IJIRA/IJSG.
- ASV is grateful to the University of Plymouth for a scholarship to pursue his doctorate.
- Technical assistance was provided by Richard Cullen, Greg Nash and Terry Richards.

Thank you for your attention Any questions?

this PowerPoint: https://tinyurl.com/ASVnewRoM

project webpage: https://www.fose1.plymouth.ac.uk/sme/acmc/Jute.htm

Commemorating the 400th anniversary of the Pilgrims pioneering voyage in the Mayflower ... departed Plymouth 6 September 1620