

Tension Technology International

Elastomers in Energy Transition

The Application of Dielectric Elastomer Generation in Wave Energy Convertors

Tom Mackay CEng FIMechE

London, 28th March Feb 2025

Elastomer Group

STRUCTURE

- Introductions
- What is wave energy? What is a Wave Energy Convertor?
- A step back elastomeric hulls. Why elastomers?
- Why dielectric generators?
- What is an Electroactive Polymer / Dielectric Elastomer Generator?
- Preliminary concept engineering investigations
- Challenges
- Addressing the challenges
- Shaping the research agenda
- What next?

Tension Technology International

TTI Ltd (Eastbourne)

O&G and marine

TTI is an independent research, design and development company; est. 1986.

TTI Marine Renewables Ltd (Inverness)

Renewables focus

TTI Testing Ltd (Wallingford) Rope, chain & cable testing services

Optimoor™

Licenced mooring software

Services include design, engineering and testing of fibre rope, wire, chain, cables, fabrics, mooring systems, riser protection nets and subsea tethers.

WHAT IS WAVE ENERGY?

- Wave energy is the world's largest untapped source of renewable energy
- Ocean waves are gravity waves generated on open water by wind (concentrated solar)
- The waves efficiently store and transport kinetic energy (not water!)
 - High energy density for renewable sources
- Wave Energy Convertors (WECs) interact with the waves to do useful work e.g., electricity generation
- Wave power is proportional to wave height squared and wave period
 - "Normal" seas might be 30 kW/m but need to survive storms at >1 MW/m big challenge

WAVE ENERGY CONVERTOR TYPOLOGIES

- Common WECs have a volume displacing hull that "sweeps" through a volume as it moves due to wave forces – the wave absorption mechanism
- The motion (v) is damped (F) with reference to another rigid body or the seabed by the power take off (PTO): P = F x v
- The PTO system (and motion) is typically linear or rotary
 - Linear generators, gearboxes and rotary generators, hydraulic systems (linear and rotary), air turbines
- These typologies mandate large rigid hulls and complex PTO systems
 - Weight, cost, complexity, corrosion, maintenance challenges = Cost of energy challenges

2008 AQUARET

A STEP BACK - REINFORCED ELASTOMER HULLS - NetBuoy™

- Elastic response in peak load events inherently peak-load shedding
- Light weight
- More cost effective than steel hull
- Well suited to mass manufacture
- Applicable to range of WEC types
- No corrosion
- Fold it up and put in a box for transport
- Installation advantages
- Now being integrated with full WEC with American developer Anacapa Wave Power

RADICAL INNOVATION

- What if the benefits of a passive reinforced elastomer hull are conferred into the power take off system as well?
- What if the power take off system becomes more distributed and integrated into the overall hull structure?
- A new class of WEC that directly converts the mechanical energy to electrical energy
 - Compliant inherently load-shedding structures
 - Delete complex, heavy, costly sub-systems
 - Improve percentage of WEC mass involved in energy conversion
 - Highly modularized and suited to mass manufacturing methods
 - Cost of energy improvements

ELECTROACTIVE POLYMER INTRODUCTION

- A sandwich of dielectric and conductive elastomers
- This forms a variable capacitor the capacitance varies with applied strain
- Applying a voltage causes mechanical movement/force: actuator
- Applying a force causes strain that changes capacitance that can be measured: sensor
- Applying a force/motion and electrical charge produces a net gain in electrical energy
 - Mechanical work (strain energy) transforms to electrical energy
 - The metamaterial becomes an electrical generator
 - The most challenging application for EAP

https://www.wacker.com/cms/enus/products/applications/electrics/electroactivepolymers/electroactive-polymers.html

WHERE TO START? REQUIREMENTS DEFINITION

- A deep dive on the requirements for effective wave energy capture and the DEG material characteristics
- First thoughts about coupling material characteristics with wave energy absorption fundamentals
 - What does an ideal WEC look like?
 - How do we best make use of the proposed benefits of DEG?
- What has been done to date in the field global IP and research papers

CONCEPT DEVELOPMENT AND ASSESSMENT

- Developing appropriate methods to assess flexible structure concepts
- Use of modelling tools to promote the creative process
- High-level comparisons between device motions
- Good for fixed-volume-swept-volume
- Useful to observe strain ranges for given wave input and typical motions
- Preliminary parametric studies

REQUIREMENTS TECHNICAL ASSESSMENT

- A suite of design tenets and requirements
 - Describing the design vectors at an ideal and pragmatic level, with justification
- Maximise volume of DEG material actively utilised in the device
- Minimise volume of material in device that is not DEG
- Minimise strain discontinuities
- Achieve high DEG strain range
- Focus operating range in "soft" part of elastomer stress-strain curve
- Utilise DEG loading (strain) mode that drives large generation factor
- Develop a design concept that is scalable
- Be hydrodynamically well-coupled in operating waves
- Be survivable
- Be novel

TECHNO-ECONOMIC ASSESSMENT: £/kWh

- Challenging:
 - How to compute performance with reasonable accuracy and certainty?
 - How to compute system costs?
- Parametric global optimisation over number configurations
 - Maximise operating strain range
 - Minimise zero strain events
 - Avoid high peak strains in energetic waves
 - Maximise wave energy absorption / mechanical work
 - Design trade-off between power density and operating strain range
- What is the fatigue response of the EAP???
- Where is it "safe" to operate?

Normalised average damper power		Tz [s]										
		4	5	6	7	8	9	10	11	12	13	14
Hs [m]	1	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02
	2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1
	3	-	0.6	0.5	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2
	4		14	0.9	0.7	0.6	0.5	0.5	0.4	0.4	0.4	0.3
	5		-	-	1.0	0.8	0.7	0.6	0.6	0.5	0.5	0.4
	6	· · ·	i,e	F1	1997	1.0	0.8	0.7	0.7	0.6	0.6	0.5

SURVIVABILITY

- Six exposed 1 in 50-year return survival seastates selected representing NW Scotland Atlantic or NW Norway North Sea
- Tested for four preferred configurations
- Operating waves drive fatigue; survival waves drive ultimate limit state

FATIGUE SPECTRA

- Large strains
 occur but 98%
 occurrence less
 than c. 0.2
 strain range
- Is this okay?
- · Or not okay?
- Paucity of published data to assess

ACTIVE DAMPING

wave energy SCOTLAND

- The DEG converts mechanical work to electrical energy
- A flow of energy out of the system
- Manifests as a loop in load-elongation curve with enclosed area being the useful work done
- How big can the loop be???
- What is the damping force characteristic???

BEGINNING TO ANSWER THE BIG QUESTIONS

wave energy SCOTLAND

- Key challenges to investigate:
 - Characterise fatigue, aging and combined electro-mechanical fatigue
 - Microplastic loss rate
 - Conversion performance and improvement what damping is achievable?

Haigh diagram

BEGINNING TO ANSWER THE BIG QUESTIONS

- Manufacturability and system integration
 - Scalability
 - Costs
 - Mechanical and electrical terminations

https://www.wacker.com/cms/enus/products/applications/electrics/electroactive-polymers/electroactivepolymers.html

NEXT STEPS

- Is there enough justification to recommend further R&D investment?
 - This project phase concludes in two months
- Verify global model with tanks tests at appropriate moment
 - Is there a level of appropriate testing that can be performed without active DEG PTO??
 - Study hydrodynamics and mechanical energy conversion
- Active DEG model in the tank to verify and step up Technology Readiness ladder
- In-depth material characterisation
 - Electro-mechanical forces
 - Electro-mechanical fatigue
- Pragmatic integrated system design

CLOSING REMARKS

- A fast-paced, fascinating, challenging project
- Clear at this stage that material development is key next step we need extensive characterisation and specific development for EAP generators
- If the material can be proven to work over the spectra of load cases and other challenges addressed there are compelling benefits for WECs
- Investigate early market opportunities in sensing and actuation to bolster R&D
- Thanks:
 - For listening
 - To the IoM3 for this opportunity to present
 - David and Gail at Rubber Heart, ACE Laboratories, Endurica and Wacker
 - All my colleagues within TTI group
 - And, of course, WES for being a visionary, encouraging and supportive client

