

Specifying Compounds for Performance at Low Temperatures

Izaak Watson – Technical Manager

Martin's Rubber Company

Based in Southampton, UK

Specialists in bespoke rubber mouldings Supplying defence, communications, aerospace and niche automotive industries for over 80 years Leading-edge systems for Industry 4.0

In-house 5 axis machining

Non-linear & hyper-elastic FE analysis

Core Values

We love what we do We dare to do the difficult We are intent on sustainability We care about the people we work with

Background

- Elastomers are used in many critical sealing applications
- Temperature range is an important aspect of selecting the right elastomer
- Behaviour at the range of temperature must be considered and is a result of the material properties, as well as the design
- May get asked for a material to suit particular service requirements, such as:
 - Operating temperature: -55°C to +125°C.
 - Non operating temperature: -78° to -55°C and +125° to +131°C

Specifying Compounds for LT

Why do my seals fail at low temperature when I have specified to a proven standard?

Compounding Considerations for EPDM

Application Considerations

Static vs. Dynamic

Physical Property Considerations

Experimental Set-Up

We will investigate the result from various standardized tests for rubber performance at low temperatures.

- Gehman Torsional Stiffness to BS ISO 1432
- Brittleness Point to ASTM D2137
- Differential Scanning Calorimetry (DSC) to ASTM D3418
- Dynamic Mechanical Analysis (DMA) to ASTM D4065
- Temperature Retraction (TR10) to BS ISO 2921

Gehman Torsional Stiffness

Temperature	Twist Angle	Torsional Stiffness	
°C	0	MPa	
-32	93	12	
-34	90	13	
-36	85	14	
-38	80	16	
-40	70	20	
-42	62	24	
-44	50	33	
-46	35	52	
-48	18	114	
-50	10	214	
-52	8	271	
-54	2	1122	
-56	0	2257	

ASTM Non-Brittle

Temperature	Samples Remaining	Result
-55°C	5/5	PASS
-60°C	0/5	FAIL

Differential Scanning Calorimetry

T _c as shown by peak tan delta	-47°C
---	-------

Differential Scanning Calorimetry

Dynamic Mechanical Analysis

Temperature Retraction

Temperature Retraction			
TR10	TR30	TR60	TR70
-49.6°C	-40.6°C	-34.2°C	-28.2°C

Low Temperature Testing

- Five methods, five different results. Up to 13°C difference.
- However, all tell you something about the nature of the material.
- But must ensure the test is reflective of the performance in service.

Test Method	Result	Suitable for
Gehman Torsional Stiffness	-47°C	Low temperature stiffness
ASTM Non-Brittle	-55°C	Low temperature durability
Differential Scanning Calorimetry (DSC)	-47°C	Material glass transition & crystallisation temperatures
Dynamic Mechanical Analysis (DMA)	-46°C/-42°C	Glass transition & crystallisation with frequency dependence
Temperature Retraction (TR10)	-49.6°C	Low temperature energising

LT Seal Failure

Why do my seals fail at low temperature when I have specified to a proven standard?

- Are the wrong tests specified in the standard?
- Or is it just the wrong parametric definition in the standard for the intended use?
- It may be that the application needs its own material specification to suit the use & ensure consistent & reliable performance in service.

Summary

- Allow seal designers in early to aid with seal & housing design
 - Avoid asking too much of a seal by leaving it to the end
- Consider the part geometry & the modes of deformation
 - Shear deformation can result in lower stiffness
- Consider the most representative low temperature test for that design
 - Real world testing can offer the best insight
- Sometimes a balance must be struck to maximise performance in other areas, such as fluid swell
- Consider other factors which may affect the component, such as thermal or mechanical shock

EXPERTS IN RUBBER ENGINEERING

QUESTIONS

Izaak.watson@martins-rubber.co.uk

Martins Rubber Company Ltd.

Web: martins-rubber.co.uk

Address: Orchard Place, Southampton. SO14 3PE

