

Flax: A greener option for composite reinforcement

Tasmin Boam 17th June 2021

Company overview

- Developer, manufacturer and supplier of prepregs
- Established in 2009
- Based in Chesterfield, UK
- In-house prepreg development and manufacturing
- ISO 9001:2015 certified

Products and services

Epoxy Component Prepregs

Epoxy Tooling Prepregs

Fire-Resistant PFA Prepregs

Natural Fibre Prepregs

Toll Manufacturing & Specials

Environmental benefits of flax

- Sustainable material source, readily available in Europe
- CO₂ neutral resource
- Lower production energy than carbon and glass
- Biodegradable
- Higher calorific value than carbon/glass composites, increasing energy capture from incineration processes

Performance benefits of flax

Technical

- Lightweight, good specific properties
- Noise/vibration damping
- Thermal insulation

Aesthetics

- Natural finish
- Colour options through resin pigmentation or fibre dyeing

		1
50	cia	1
.)()		н

- Safe to handle, non-toxic, non-irritating
- Safer failure mode

	Flax	Glass	Carbon
Strength	***	****	****
Lightweighting	****	***	****
Economy	***	****	**
Sustainability	****	**	*
Vibration damping	****	**	*

Example: McLaren F1 racing seat

"...a seat with the required strength and stiffness, but with a **75% lower CO₂ footprint** compared to its carbon fibre counterpart."

"Greater vibration absorption and impact resistance"

McLaren F1

Seats: ampliTex[™] flax/epoxy prepreg + powerRibs[™]

Challenges

- Variability
 - Higher variability than synthetic fibres properties, thickness etc.
- Moisture
 - Natural fibres absorb moisture increased volatiles, risk of porosity
 - Coating may be necessary to protect parts in-service, seal cut edges etc.
- Temperature
 - Natural fibres can degrade/burn at high temperatures (>150°C)
 - Limit cure, post-cure and in-service temperatures
 - Thermoplastic matrix materials with high processing temperatures cannot be used

Summary

- Flax fibre composites can offer significant improvements in sustainability, without compromising performance
- Increased demand is likely due to more environmental legislation and public awareness
- Development of fibre extraction and surface finishing processes could enhance properties further

Any questions?

