

Extrusion-based 3D printing of novel silicone elastomers with advanced properties.

Chiara Da San Martino Supervisor: Prof Julien Gautrot

Rubber in Engineering

Introduction

Silicone elastomers are often used as matrix for:

- Medical implants
- Microfluidic microfabrication
- Advanced in vitro cell culture models
- Most common used silicone for these applications: SYLGARD 184
- Takes 35 minutes at 100°C or 2 days at RT to cure

UV curable silicone elastomers useful in the fabrication of complex microfluidic and organ-on-chip devices

Advantage: fast processing point of view,

Disadvantage: requirement of an inert atmosphere.

Our research focused on:

- Development UV curable PDMS matrices that are tolerant to oxygen with fast curing kinetics
- Optimisation of formulations to achieve self-supporting extrusion-based 3D printable inks, with a single UV cure method, print organ-on-chip devices

Novel thiol-ene silicone system

Schematic representation of photocrosslinking between PDMS-NB and PDMS-thiol via thiol-ene reaction.

A novel thiol-ene silicone system based on:

- a PDMS bearing terminal norbornene groups (PDMS-NB)
- a highly functionalised thiol PDMS (PDMS-thiol)
- to achieve particularly fast cross-linking with very limited oxygen inhibition even in ambient atmosphere, without requirement for deoxygenation.

Impact of norbonene to thiol ratio

- (A) In-situ photorheology.
- (B) Gelation times as a function of norbornene:thiol ratios.
- (C) Frequency sweeps of cross-linked PDMS. Frequency dependency of moduli as function of thiol:alkene stoichiometry.
- (D) Comparison of G' of the resins before UV and crosslinked silicones.
- Fast curing speed (less than 1s)
- Excellent tolerance to the inhibition by oxygen.

Impact of norbornene:thiol molar ratio on the kinetics and the mechanical properties of cross-linked PDMS network *via* thiolene chemistry.

Rheological analyses

- Faster curing speed (mostly less than 1s)
- Excellent tolerance to the inhibition by oxygen.
- Capable to achieve a complete cure without any oily residues on the surface of the elastomer
- Compatible with different photoinitiating systems.

Impact of nanosilica fillers

- (A) In-situ photorheology.
- (B) Gelation times of unfilled and different filled silica/silicone composites.
- (C) Frequency sweeps (oscillation amplitude of 1% strain) of cross-linked nanocomposite.
- (D) Comparison of G' of the resins before UV irradiation and the cross-linked nanocomposite.

Thiol-norbornene silicone composites filled with fumed nanosilica were investigated for application in 3D printing.

Impact of nanosilica fillers on the curing kinetics and silicone network's properties.

Extrusion 3D printing

Multi print-heads

Continuous printing in layer-by-layer manner

Material is extruded by air pressure or mechanical force

Advantages

- Print directly on substrates (cover slips, 6 well plates).
- Multiple materials: heterogenous properties, incorporation of different stiffnesses
- UV curing (integrated UV lamp of the 3D DiscoveryTM (360 mW, PH5)
- One step manufacturing process
- Sterile conditions (within bio hood)

RegenHU 3D Discovery printer

Quantification of shape fidelity, filament bridging

D

Filament bridging, overhang tests

- Retain very fast cure speed (only ~200ms slower than pristine resin).
- Comparable mechanical properties of cross-linked silicone networks.
- Good resolution of 3D printing with the ability to print the overhanging part.

Extrusion 3D printing

Scale bar: 5mm

Scale bar: 5mm

Scale bar: 3mm

Extrusion 3D printing

- Dual printing
- Ability to multi-print different materials for complex designs.
- Effectively tailored mechanical properties of silicone network.
- Good interfacial adhesion between printing materials.

*by Alice Dowden

Actuation of 3D printed devices

Scale bar: 2mm

Scale bars: 3mm

Actuation of 3D printed devices

Time (sec)

Stiff PDMS Soft PDMS UV light

40

250

50

Scale bars: 3mm

0.4 0.38 0.32 0.3 210 60 80 100 120 140 160 180 200 220 240 30 120 150 180 time (sec)

Scale bar: 2mm

Pressure: 0-300mbar

Pressure: 0-1000mbar

Bioapplications

At rest Scale bars: 3mm

300mbar Pressure

Scale bars: 3mm At rest

300mbar Pressure

This actuation will allow future mechanical cellstimulation introducing mechanical stresses to an in vitro tissue in 3D.

Phalloidin Fibronectin

- Magnification:63x
 Mature fibronectin deposition
- Clear fibers.

Scale bar: 5mm

Bioapplications

Scale bar: 3mm

Conclusion

- Thiol-ene silicone systems with excellent control of kinetics and mechanical properties in ambient atmosphere.
- Excellent tolerance to oxygen, ultrafast curing process.
- Successful printing of thiol-ene silicones in air, no need of inert atmoshere
- Excellent candidate for extrusion 3D printing: viscosity, rapid crosslinking, shape fidelity, adhesion to glass slides or petridishes, excellent cured mechanical properties.
- Possibility to print complex 3D structures, organ-on-chip devices
- Possibility to actuate these 3D structures, future mechanical cell-stimulation

Scale bar: 5mm

Scale bar: 3mi

Thanks

Barts and The London

Prof Julien Gautrot

Dr. Khai Duong Quang Nguyen Alice Dowden Eljah Mojares

Rubber in Engineering

