Rubbers under high triaxial loads

1111

PJ Gould

Impact against propellant – Insensitive Munitions

- We have a duty of care for our armed forces
- · Our weapons should only explode when and where we want them to
- NATO standard for Insensitive Munitions response
 - Fragmenting munitions attack (Fragment Impact)
 - No response more severe than Type V (Burning)
 - Steel fragment from 15 g with velocity up to 2600m/s and 65 g with velocity up to 2200m/s.
- These tests are really expensive and a cost-effective approach to assurance is needed
- Small-scale approach using highly-instrumented tests on small amounts of material
 Still expensive and needs material to be available
- Ideally we would be able to predict response from chemistry and physics

Impact against propellant

• Shock-to-Detonation Transition and No reaction

Impact against propellant

• Unknown (X) to Detonation Transition

Impact against propellant

- Need to predict consider the material response
- Impact conditions
 - Uniaxial strain
 - Implies Poisson's ratio is zero but these are large volumetric deformations
 - Sub microsecond response: strain rates 10⁷/s
 - Pressure 6 GPa
 - Temperature?
 - Mechanical work with heat capacity
 - Entropic effects with high hoop strain at rear of block
- What are the things we need to predict?

Group Interaction Modelling

- Group Interaction Modelling (GIM) is a group contribution method for predicting properties of polymers without need for synthesis or measurement.
 - Originated in polymer industry
 - Significant evidence of predictive capability
 - Can predict physical and mechanical properties as a function of rate and temperature through the glass transition
- Mean Field description of energy-deformation response
 - Van der Waals and Hydrogen bonding
 - Can be predicted via quantum mechanics codes
 - Account for vibrational modes and conformational state
 - Equivalence of thermal and mechanical energy

• Interacting groups have characteristic contributions to parameters used:

- M molecular weight of a group
- V_w (cc/mol) van der Waal's volume of a group
- E_{coh} (J/mol) cohesive energy of intermolecular forces
- θ_{D} (K) 1-D Debye reference temperature related to polymer chain stiffness
- N skeletal degrees of freedom per group

GIM

- Potential function method
 - Lennard-Jones and self-similar
 - Born criterion for instability
 - Stress and bulk modulus from derivatives of E(V)
 - Put P vs V into Rankine-Hugoniot equations
 - Shock equation of state
 - Also get tensile response which is hard to measure

$$P = -\frac{dE}{dV}$$

Point of inflection correlated with glass transition
 – Is L-J sufficient for this?

QINETIQ

Pressure vs volume

- Rubbers are not incompressible
- Hugoniot from GIM potential function
 - Allows shock propagation to be predicted
- Some questions arise about volumetric loss through glass transition
 - In particular: how does one predict the factor 2 in bulk modulus change?
 - Link to thermal expansion
 - Further questions then about thermal expansion coefficient of plasticized rubbers

Pressure vs volume

Validation against ring-down

Pressure vs volume

- Comparison of VISAR and HetV with numerical simulation (GRIM)
- The differences reflect details of the experimental arrangement not being included in the simulation and known physics missing from the material model

Heat Capacity

- 1-D Debye Theory
 - VV Tarasov, Russian Journal of Physical Chemistry 39 (1965) 1109
 - B Wunderlich: ATHAS database
- · Chain skeletal modes contribute directly to potential function and thermal energy
- At glass transition need extra 0.5N degrees of freedom
- · Group optical modes treated as Einstein oscillators

$$C \approx N R \frac{\left(\frac{6.7 T}{\theta_D}\right)^2}{1 + \left(\frac{6.7 T}{\theta_D}\right)^2} \qquad C_{\rm E} = \frac{{\sf R} \left(\frac{\theta_{\rm E}}{T}\right)^2 \exp\left(\frac{\theta_{\rm E}}{T}\right)}{\left[\exp\left(\frac{\theta_{\rm E}}{T}\right)^{-1}\right]^2} \qquad H_T = \int_0^T C \ dT$$

Heat Capacity – pressure effect on heat capacity

- Movement of T_a as a function of pressure can be seen in poly(styrene) data*
 - Isothermal data
 - Loss peak appears to broaden
 - If T_g moves above current temperature then extra degrees of freedom should be suppressed
 - Would have a significant effect on heat capacity
 - What happens adiabatically?
 - How does this tie in with instability condition for glass transition?
 - HTPB would require imposed pressure of 400 MPa to move T_g above room temperature
 - Heat capacity would drop from 2 J/kg/K to 1.5 J/kg/K
 - Needs verification

$$\frac{dT_g}{dP} = 4\frac{P}{B}\frac{V}{Nk}$$

Heat Capacity – pressure effect on heat capacity

- Should be working with volume but this has practical issues
- Pressure/volume affects Debye θ temperatures which changes the vibrational modes
- This reduces heat capacity
- Use QM to calculate new vibrational modes for different pressures and new θ temperatures
- Additional to movement of glass transition but there is a feedback
 - Need to avoid double counting

Debye temperatures can be included into model to suggest heat capacities at high pressures.

At 5 GPa and 300K

HTPB $C_v = 1.0 \text{ J g}^{-1} \text{ K}^{-1}$, RDX $C_v = 0.79 \text{ J g}^{-1} \text{ K}^{-1}$

Can use Dreger & Gupta measurements under same conditions to give RDX $C_v = 0.81 \text{ J g}^{-1} \text{ K}^{-1}$

ZA Dreger, YM Gupta, J. Phys Chem B 111 (2007) pp 3893 - 3903

QINETIQ

Strength of rubber

- Good capability to predict rubber extension and failure in uniaxial tension
- Entropic stiffening treated as loss of degrees of freedom in modulus calculations
- Fracture when all degrees of freedom associated with glass transition have been lost
- Good prediction of silk properties Vollrath & Porter
- How does this extend to 3D strain?
 - Particularly tensile
- How does it tie in to fracture mechanics and fragmentation?
 And temperature?

F Vollrath and D Porter, "Spider silk as archetypal protein elastomer", Soft Matter, 2006, 2, 377–385

Fragmentation

- There is an obvious lengthscale from microstructure
- So use a percolation model with energy-based failure criterion
 - Site percolation: bond is either failed or not
 - Site size is microstructural length
 - Energy gives probability of failure which translates to number of failure sites in 3D lattice
 - When there is no fully-bonded path material is fragmented
 - Gives fragment size distribution
- Allows other capability such as burn area calculation
- What happens if there is no obvious lengthscale?
 - Comminution limit of rubbers?
 - Link to fracture mechanics

Fragmentation

- Validation against soft capture
- Compare model predictions with measured fragment distributions and shape of fragment cloud
- Importance of numerical scheme

QINETIQ

16 Rubbers under high triaxial loads QINETIQ/20/01114 | March 2020 | $\ensuremath{\mathbb{C}}$

Summary

- Some predictive capability
- Some fundamental questions still to be answered
 - Temperature
 - Time-dependence of volumetric properties
 - Configurational entropy in triaxial stress states
 - Particularly tensile

