

Using Carbon Black to Meet the Design Challenges of EV Applications

Dr J Hallett, Dr L Tunnicliffe

CHALLENGE TESTED

FAMILIAR BONDS

COMPOUND KNOWLEDGE MICRO MATTERS BEYOND DURABLE

Contents

- Introduction to Birla Carbon
- Carbon Black Manufacturing and Key Properties
- Changing Requirements for Electric Vehicles and Potential Solutions
- Conclusions

Birla Carbon

Birla Carbon Part of Aditya Birla Group

manufacturing

facilities

130+

Companies in 36 countries across 6 continents

50

130+ State of the art E

120000

Employees making up 42 nationalities

USD 44.3 billion

In revenues Over 50% from International operations

Birla Carbon Global Footprint

SHARE

Birla Carbon Sustainability

We encourage a culture of responsibility that promotes the health, safety and wellbeing of our employees and the communities in which we operate.

We are committed to producing a consistent supply of world-class carbon black for our customers, while reducing its environmental impact and ensuring that it generates real social value.

We strive to be a responsible steward of the environment by optimizing the conversion of carbon to carbon black, minimizing our carbon dioxide (CO₂) emissions and maximizing the recovery of the energy generated by our manufacturing process.

Gold rating from EcoVadis for Sustainability in 2016 to 2019

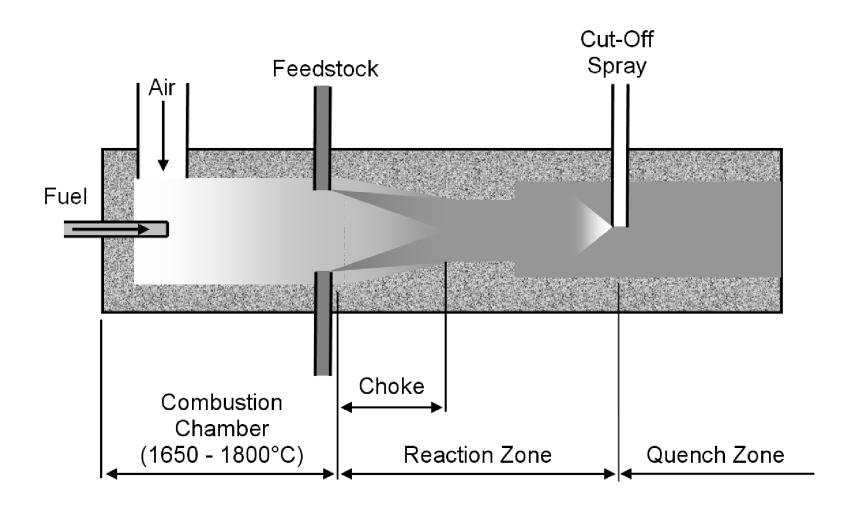
SHARE THE STRENGTH

Carbon Black Manufacture and Key Properties

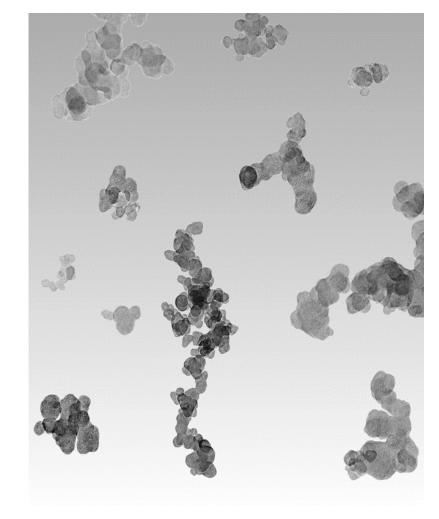
7

What is Carbon Black?

- Carbon black is a virtually pure colloidal form of elemental carbon
 - A Colloid is a system in which finely divided particles, which are approximately 10 to 10,000 angstroms in size, are dispersed within a continuous medium in a manner that prevents them from being filtered easily or settled rapidly
- Carbon black is formed by the thermal decomposition (incomplete combustion) of a hydrocarbon feedstock
- Total world capacity exceeds 12 million MT per annum


Carbon Black Furnace Plant Schematic

Carbon Black Furnace Reactor Detail



Carbon Black Fundamental Properties

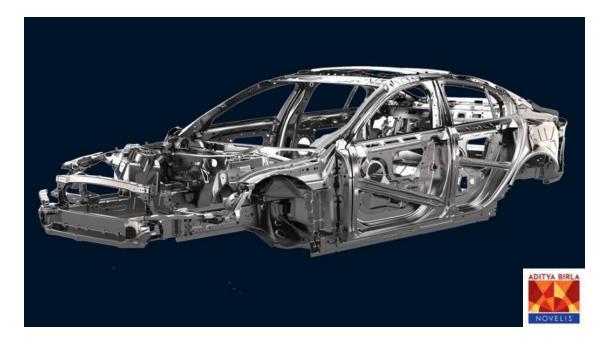
- A given sample of Carbon black can be defined by a series of fundamental properties
- Morphologically it is defined by:
 - Particle Size and its Distribution
 - Aggregate Size and its Distribution
 - Aggregate Shape
 - Pore Size Distribution
- Other properties include
 - Surface Activity
 - Impurities (carbon & non carbon)
 - Physical Form

Elastomers in Electric Vehicles

Where are Elastomers Used in Vehicles?

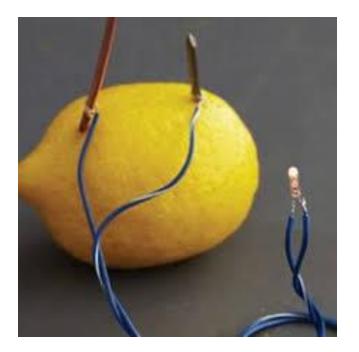
- A typical car contains over 60kg of elastomeric material
- Applications include
 - Tyres
 - Weatherstrip around doors, glass and other openings
 - Suspension
 - Body isolation
 - Motor mounts
 - Coolant Hoses
 - Drive shaft boots
 - Dual mass flywheels.....
- Many of these applications are affected by the increased electrification of vehicles

Trends in Car Design Affecting Rubber Components


- Increased use of lightweight materials to reduce vehicle weight
- Requirement for improved vibration isolation for passenger comfort
- Reduced rolling resistance tyres to improve range

Lightweight Materials

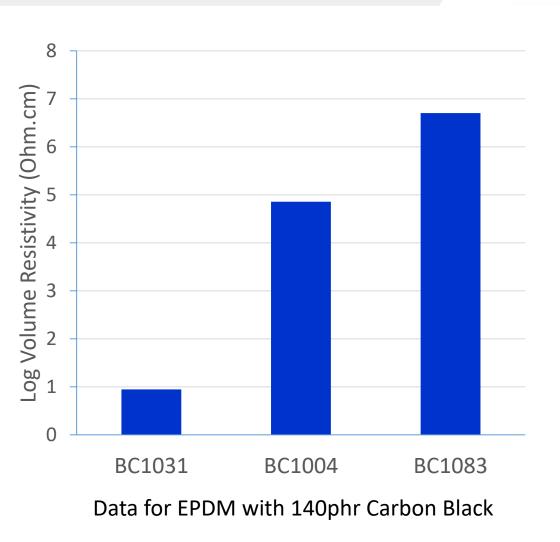
- For Electric Vehicles weight is possibly more important than for IC equivalents
 - Either reduce battery size and cost for given range or increase range for a given battery
- Reducing weight by 100kg reduces energy consumption 3.6% on average
- Weight reduction targets have led to increased use of lightweight materials in vehicle components
 - Aluminium and Magnesium in vehicle body components
 - Weight reduction targets for elastomeric components



ADITYA BIRLA

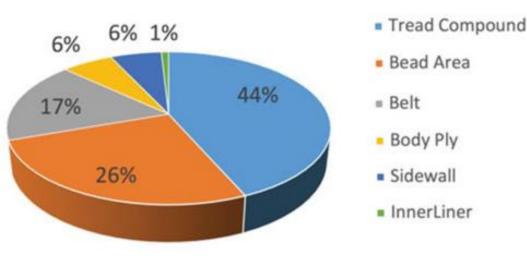
Challenges with Light Weight Materials: Galvanic Corrosion

- A carbon black filled rubber has a Galvanic Potential like all conductive materials
- In the presence of a material with a different potential and an electrolyte a galvanic cell can be created
 - For lightweight metals such as Aluminium and Magnesium this can lead to corrosion of the metallic component
- Can be prevented using a low conductivity compound



Lightweight Material Solution: Low Conductivity Carbon Blacks –BC1004 and BC1083

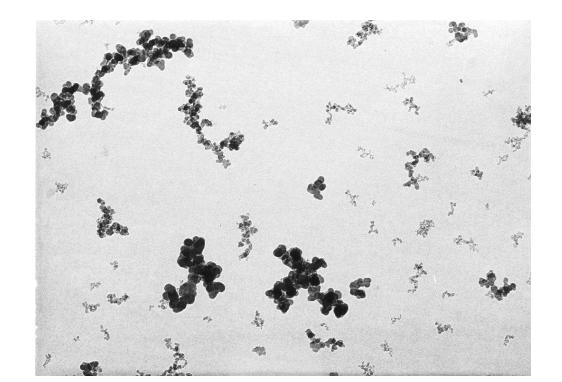
- Reducing conductivity could be achieved by adding white filler
 - Increases component weight
 - Affects final properties of compound
- Modern low conductivity carbon blacks such as BC1083 offer significantly lower conductivity than traditional N550 type products without the use of white fillers
- Minimises component weight while maintaining physical and aesthetic properties and reducing risk of galvanic corrosion



18

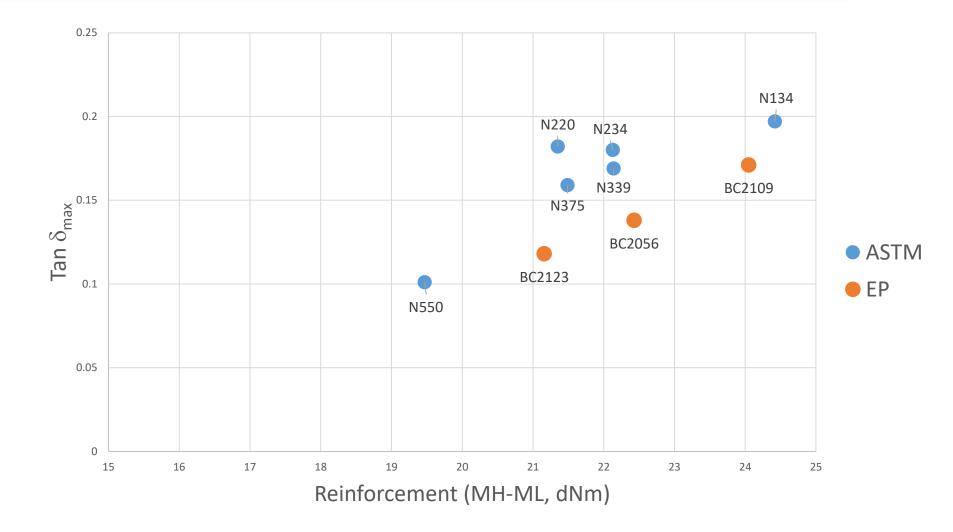
Low Rolling Resistance Tyres

- 10% reduction in Rolling Resistance reduces energy usage by 1.5 to 3% depending on vehicle weight, tyre size etc.
 - More importance with increasing battery size (weight)
- Tread largest contribution to rolling resistance followed by the bead area
- Silica reduces RR of tread compound, but other solutions required for the carcass


SHARE THE STRENGTH

Solutions for Low Rolling Resistance Tyres: Enhanced Performance Carbon Blacks

- Morphology tailored specifically to meet modern tire requirements
- Allows reduction in hysteresis while maintaining traditional carbon black benefits of
 - Good abrasion resistance
 - Good traction
 - Easier processing than silica



Enhanced Performance Carbon Blacks In-Rubber Properties – Reinforcement vs. Hysteresis

Solutions for Low Rolling Resistance Tyres: Enhanced Performance Carbon Blacks

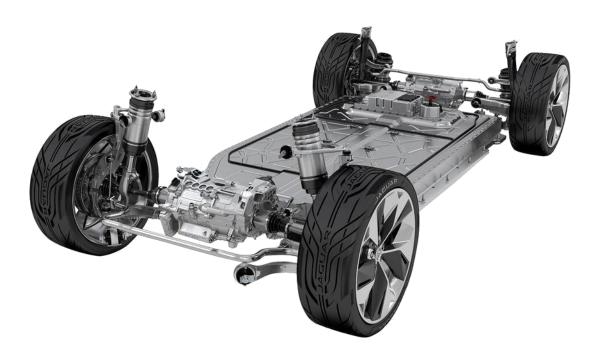
- BC2056 in subtread
 - Reduced hysteresis while maintaining other properties
- BC2123 or BC2056 in apex (3)
 - Reduced hysteresis while maintaining stiffness
- BC2123 in skimcoat (2,6,7)
 - Lower hysteresis alternative to N326
- BC2123 in sidewall (5)

SHARE THE STRENGTH

- Create stiffer sidewall while maintaining hysteresis of traditional N550 solutions
- Ideal for run-flat applications

Solutions for Low Rolling Resistance Tyres: Low Surface Area Carbon Blacks for Inner-Liners

- Traditional innerliner compounds
 use N660
 - Good balance between permeability, compound cost and processability
- Switching to BC1004 reduces hysteresis while maintaining permeability and other characteristics
- Low residue levels within BC1004 also allow for less scrap due to holes in innerliner materials caused by grit.

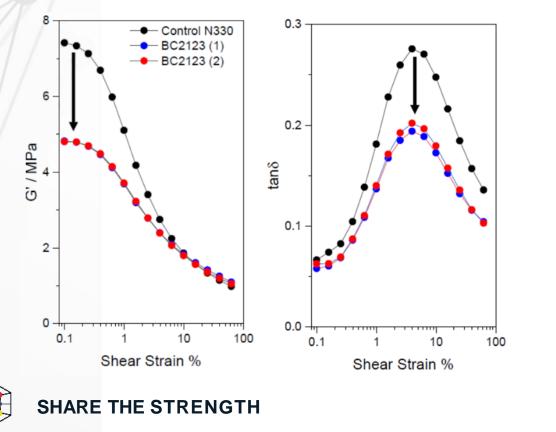

Ingredient	N660 (60phr)	BC1004 (60phr)
Hardness	54	53
tanδ max	0.268	0.251
Oxygen Permeance	23.88	23.59

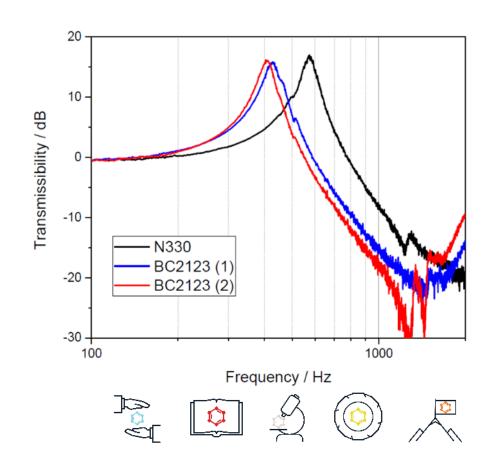
NVH Suspension and Body Isolation

- IC engines generate more lower frequency vibration than electric motors
 - Help mask some road noise frequencies
 - Isolation required from idle to full rpm
- EV's require isolation at lower frequencies at higher weight in suspension components
 - Requires stiffer mounts with lower natural frequency
- Hybrid vehicles worst of both worlds
 - Heavier with very wide frequency range due to combination of IC and electric power.

Jaguar

Solutions for Anti-Vibration: Requirements


- Higher static stiffness to carry increased vehicle weight
- Lower natural frequency to allow isolation over wider frequency range
- Low spring rate (K_d/K_s) for reasonable isolation performance
- Good fatigue life



Solutions for Anti-vibration: Enhanced Performance Carbon Black Grades

- ADITYA BIRLA BIRLA CARBON
- Allows equivalent static properties (load carrying capability) to traditional ASTM tread grades with the following benefits:
 - Reduction in spring rate for improved isolation at equivalent static stiffness
 - Reduced natural frequency

Summary and Conclusions

27

Summary

28

- Electrification of fleet offers challenges to majority of rubber parts in vehicle
 - Range anxiety and battery cost leading to use of new lightweight materials and lower rolling resistance tyres
 - Change in operating conditions for vibration damping materials
- New formulations and product designs needed to meet these requirements
- Birla Carbon offers solutions to many of these new and updated requirements

Birla Carbon Solutions

ADITYA BIRLA BIRLA CARBON

- Lightweight Materials
 - BC1083 and BC1004 to minimise risk of galvanic corrosion through lower conductivity compounds
- Lower Rolling Resistance Tyres
 - EP Tread grades for lower hysteresis body compounds
 - BC1004 for innerliners with reduced hysteresis
- Suspension Components
 - EP Tread grades for lower natural frequency and dynamic static ratio while maintaining static stiffness

Thank You

SHARE THE STRENGTH

