3d printing elastomers – the future?

Dr Sarah Karmel Head of Chemistry Rheon Labs

Elastic polymers

WHAT ARE ELASTOMERS?

THERMOPLASTIC VS THERMOSET ELASTOMERS

- Long polymer chains
- Undergo shape recovery after being submitted to strain

WHAT ARE ELASTOMERS USED FOR?

SHORE HARDNESS SCALES

WHY 3D PRINT ELASTOMERS?

- Data driven design
- Personalization
- Lower density / weight structures
- On demand parts
- Low material waste (AM)

Thermoplastic elastomers

Thermoset elastomers

3D PRINTING OF THERMOPLASTIC ELASTOMERS: FUSED FILAMENT FABRICATION (FFF)

- Poor interlayer adhesion
- Poor mechanical properties in parts
- Poor surface finish
- Hygroscopicity of elastomeric filaments

3D PRINTING OF THERMOPLASTIC ELASTOMERS: FUSED FILAMENT FABRICATION (FFF)

Low Modulus of elastomeric filament → filament buckling

High EMod → no buckling Low EMod → buckling

3D PRINTING OF THERMOPLASTIC ELASTOMERS: SELECTIVE LASER SINTERING (SLS)

- Use of spherical powders
- Well-defined powder diameter required
- Challenging powder preparation
- Cryo-milling or solvent precipitation: compatibility with elastomers
- Currently: limited material availability

3D PRINTING OF THERMOSET ELASTOMERS: VAT **PHOTOPOLYMERIZATION**

3D PRINTING OF THERMOSET ELASTOMERS: VAT PHOTOPOLYMERIZATION

- Polymer chain length is key to mechanical properties
- Vat photopolymerization is limited by viscosity
- Addition of (meth)acrylate monomers to achieve printable viscosities
- Loss of properties
- Introduction of brittleness

3D PRINTING OF THERMOSET ELASTOMERS: VAT PHOTOPOLYMERIZATION

Innovative solutions: Carbon 3d secondary chain extension

• Use of 2-component systems

Innovative solutions: Carbon 3d secondary chain extension

Use of 2-component systems

Step 2: thermal annealing

Step 3: chain extension with R-OH or similar

3D PRINTING OF THERMOSET ELASTOMERS: VAT PHOTOPOLYMERIZATION

Innovative solutions: Carbon 3d secondary chain extension

Use of 2-component systems

Long polymer chains with true elastomeric properties

3D PRINTING OF THERMOPLASTIC ELASTOMERS: SUMMARY

3D PRINTING OF THERMOPLASTIC ELASTOMERS: THE CHALLENGE

3D PRINTING OF THERMOPLASTIC ELASTOMERS: THE FUTURE

3d printing of high-performance elastomers

Our vision is to empower performance through our technology.

We are driven to engineer products with our partners which deliver truly game-changing performance in energy control.

OUR PROCESS RESEARCH

REACTIVE POLYMERS

- At the core of RHEON™ technology is a reactive polymer that intelligently strengthens when subjected to force.
- RHEON LABS can make adjustments to the material chemistry to achieve different product feel and performance.

TECHNOLOGY OVERVIEW RHEON™ TECHNOLOGY

RHEON™ TECHNOLOGY

RHEON™ technology can **control energy** of any amplitude or frequency – from small vibrations to life-threatening single impacts.

At the core of RHEON™ technology is **reactive polymer** that intelligently strengthens when subjected to force.

RHEON™ technology is **soft and flexible** in its natural state but stiffens momentarily to dissipate high levels of energy.

IMPACT CONTROL

- RHEON™ technology dynamically dissipates energy.
- This dynamic property provides a breakthrough for applications where flexibility and movement are paramount but high levels of impact dissipation are a must.

TECHNOLOGY OVERVIEW

RHEON™ TECHNOLOGY

VIBRATION CONTROL

- RHEON[™] technology actively dampens vibration and noise.
- The technology reacts to control small vibrations or constant noise for enhanced comfort and performance.
- A game-changer for any application where reducing vibration is key to product performance.

OUR PROCESS

DEVELOPMENT

FUNCTIONAL GEOMETRIES

- RHEON[™] geometries can be used to drive the density, feel and performance of your product.
- They can be designed to give what we call anisotropic performance.
- This unique design feature allows products to have different properties depending on the direction or force it they are subjected to.

OUR PROCESS MANUFACTURING

ADVANCED MANUFACTURING

- RHEON uses a combination of advanced manufacturing techniques to rapidly scale up solutions.
- Such techniques rapidly cut down the time from concept to production.
- The RHEON[™] technology platform allows engineers and designers to fundamentally re-imagine their products, to iterate faster and deliver product properties previously thought impossible with conventional materials.

Contact

info@rheonlabs.com

London

1 Broughton Street Battersea London SW8 3QJ UK

USA

RHEON LABS, Inc. 26F Congress St, Suite 167 Saratoga Springs, NY 12866

