

The permeation of carbon dioxide or hydrogen into elastomers

Dr Bernadette Craster, FIMMM Technology Fellow

Polymeric Materials and Ageing through Permeation Processes

JOINING INNOVATION AND EXPERTISE

Copyright © TWI Ltd 2025

Presentation plan

- Introduction
- Aims for permeation measurements
- What is a permeation test and how useful is the measurement?
- Controlling the boundary measurements for exposure
- An example of CO₂ ageing through permeation data, with and without impurities
- Hydrogen transport
- Recommendations

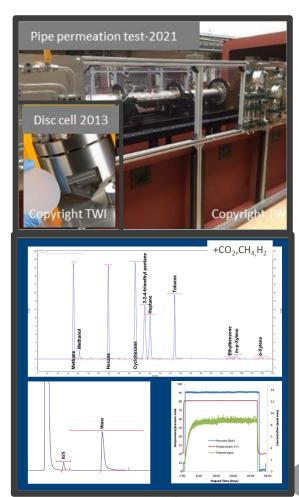
Introduction

International Membership base

- Performance of materials
- Contracted for confidential project or research

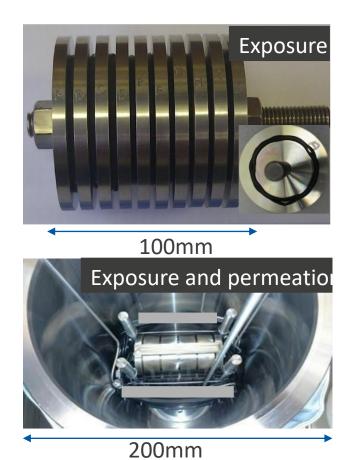
Consultants, Engineers and Experimentalists

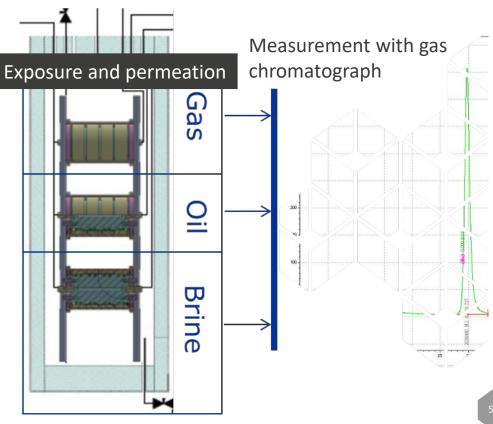
- Understand the question
- Design a non-standard experiment with known boundary conditions
- Interpret data for use at all readiness levels


Permeation facility

- Developed since 2012
- **Mixtures** CO_2 , H_2 , CH_4 , O_2 , H_2O (water, vapour), H_2S , NH_3 , toluene, cyclohexane, heptane, xylene (NO_x and SO_x).
- Pressure, temperature and extended duration

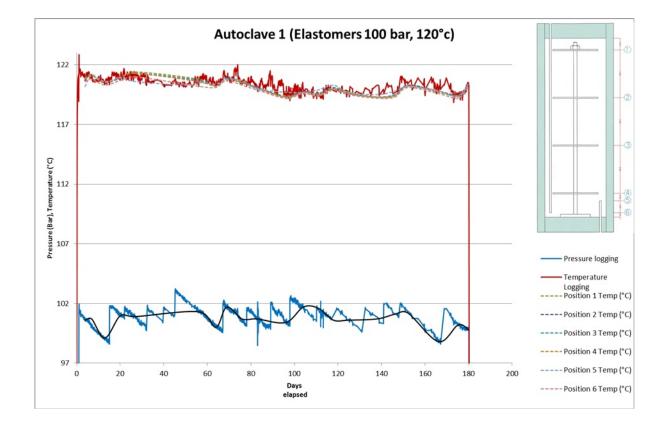
A service to our Members - our aims


- Material selection
 - Change in properties over lifetime as a design input for a third party.
- Establish a permeation test as an ageing test
 Small volumes of fluids (gases, mixtures or liquids)
 Varying fluids, temperatures and pressure
 increase and reduction
 - Different length scales
 - Lasting a few months
 - Data interpretation to include transport coefficients
 - activation energy for permeation
 - hole affinity constants



Copyright © TWI Ltd 2025

Controlling the boundary conditions - Fluid to outer surface of O-rings



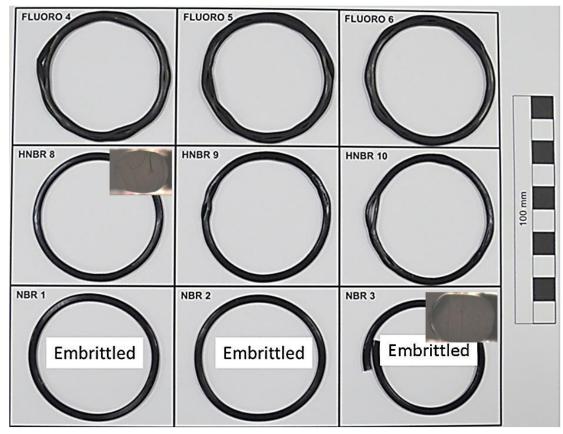
TWI

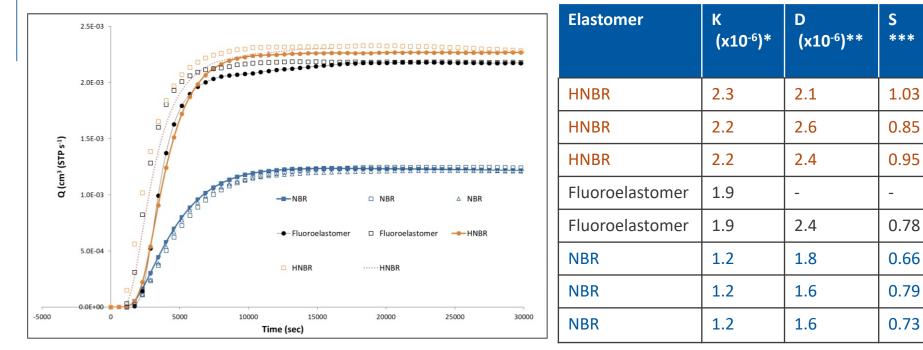
Controlling the boundary conditions - 19L volume CO_2 with 1.5%H₂S experiments (in the past)

Exposure to supercritical CO₂ with 1.5% H₂S in large volume autoclave

NBR brittle at 45 days and 180days

Polymer	+D wt%	+D wt%*	+D d%	+D d%
	45 days	180 days	45 days	180 days
NBR	7.13 ± 0.04	7.56 ±0.01	1.29 ±0.09	1.42 ±0.24
HNBR (G8.9.1)	4.39 ± 0.01	7.47 ±0.06	-0.07 ±0.25	1.74 ±0.11
FLUOROELAST	2.75 ±0.02	3.54 ± 0.04	1.98 ±0.17	2.88 ±0.06


Polymer	$\sigma_{ m m}$ MPa Unaged	$\sigma_{ m m}$ MPa 45 days	σ _m MPa 180 days	్ _{tb} unaged	్ _{tb} 45 days	్ _{tb} 180 days
NBR	23.1 ±1.0	6.0 ±0.19	7.4±0.3	2.30 ±0.10	0.65 ±0.08	0.02 ±0
HNBR (G8.9.1)	32.0 ±2.9	29.5 ±2.5	34.7±1.4	2.04 ±0.13	0.88±0.8	0.40 ±0.03
Fluoroelastomer	15.6±1.4	11.9±0.4	10.4±1.3	0.89 ±0.11	0.52 ±0.01	0.44±1.34


O-rings after RGD in CO₂ with 0.186% H₂S at 120°C and 100 barg

	+D wt% RGD (15	
FLUORO	days)	
4	0.31	
5	0.31	
6	0.28	
HNBR		
8	0.22	
9	0.21	
10	х	
NBR		
1	0.25	
2	0.22	
3	0.23	

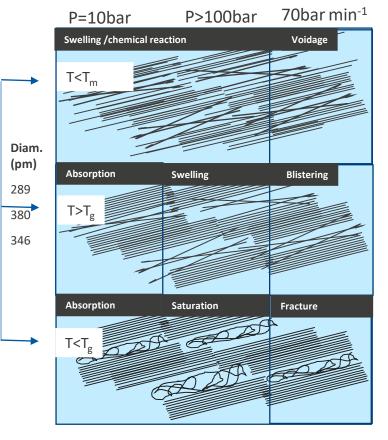
TWI

Permeation data on disc experiments (120 $^{\circ}$ C and 100barg, supercritical CO₂)

*cm³(STP)s⁻¹ cm cm⁻² bar⁻¹

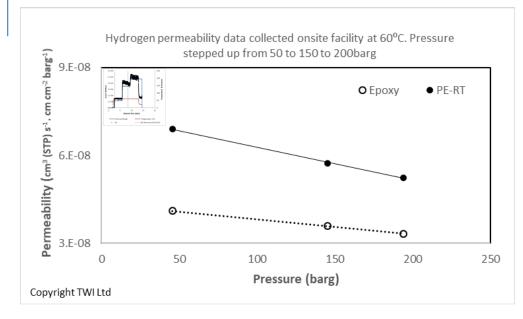
cm² s⁻¹, * cm³(STP) cm⁻³ (polymer)bar⁻¹

9

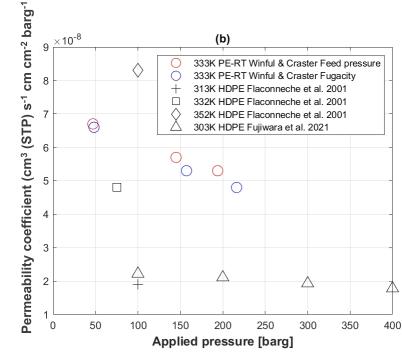

Polymer morphology - hydrogen interactions

 H_2

CH₄


0,

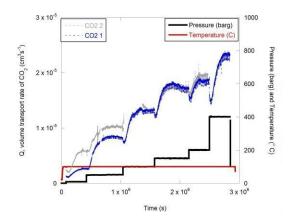
- Mainly transported through the amorphous regions as molecular hydrogen
- What about impurities?
- Can displace other dissolved gases?
- Will hydrogen cause additives to be displaced?
- Possibility for reaction where residual catalysts are present. Atomic hydrogen generated locally?
- Swelling and decompression damage at higher pressures

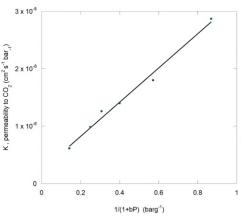


Example of permeation of hydrogen through polymers

Winful, D.; Craster, B. Testing of metallic and non-metallic material in gaseous hydrogen. In Proceedings of the Steel and Hydrogen, 4th International Conference on Metals Hydrogen Steel and Hydrogen, Ghent, Belgium, 11-13 October 2022.

Raheem, H., Craster, B. and Seshia, A., 2022. Analysis of Permeation and Diffusion Coefficients to Infer Aging Attributes in Polymers Subjected to Supercritical CO2 and H2 Gas at High Pressures. *Polymers*, *14*(18), p.3741.


Summary


- The boundary conditions on the specimens on exposure to CO₂ alters the outcomes
 - Differences in mass uptake
 - Rapid gas decompression damage
 - Compression set
- At early times, on development of the permeation steady state, there is no evidence of ageing
- The inclusion of an impurity such as H₂S in the CO₂ perturbs the supply of CO₂ at the elastomer surface.
- In detailed study of transport, the fugacity of the CO₂ needs to be allowed for. This is not a concern in hydrogen experiments.

Recommendations

- Establish a permeation test as an ageing test
 Small volumes of fluids (gases, mixtures or liquids)
 Varying fluids, temperatures and pressure
 increase and reduction
 - Different length scales
 - Lasting a few months
 - Data interpretation to include transport coefficients
 - activation energy for permeation
 - hole affinity constants

Craster, B., & Jones, T. G. (2019). Permeation of a range of species through polymer layers under varying conditions of temperature and pressure: in situ measurement methods. Polymers, 11(6), 1056.