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Cells in Culture Do not Look Like Cells in Vivo

• Cells and tissues in vivo have reproducible shapes, size and geometries.
• In 2D cultures, cell shape is unconstrained.

2D In Vitro Culture

Herle et al. Development (1991), 112, 193.

In Vivo

Niessen et al. J. Cell Sci (1996), 109, 1695.



Skin - Epidermis Intestine

• Stem cells reside in well defined locations.
• The architecture of the tissue and that of the 

“niche”  are important to ensure proper functioning 
of stem cells and tissue hometostasis.

Geometry, Structure and Function
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Recreating Higher Level Structure and Function

• Recreates structure and captures biophysics.
• Probes observed nanotoxicological response to nanoparticles (immune 

response), in particular in biophysical context (mimicking breathing).
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Higher Degree of Structure and Function in Tissues



An Engineering Approach
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Multi-Scale Engineering of Compartmentalised Microvascularised Tissues

Compartmentalisation
Microfluidics
3D Printed

Biomechanics
Pneumatic

ECM Biochemistry
Physics/Mechanics

In situ gellation

Bonding
Long-term structure

Stabilised co-culture
Perfusable vasculature

Biomimetic basement membrane
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Microfabrication and Prototyping of Photocurable Silicones

Compartmentalisation
Microfluidics
3D Printed

Biomechanics
Pneumatic
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3D Ink Design – Ultra-Fast Cure Chemistry

• Ultra-fast cure chemistry.
• Cures in air without any oil residue.
• No toxic catalyst.
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Graphene-Based Conductive Silicones
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Composites

• Thermal stability up to 400oC
• Curing of composites with 3 wt% graphene 

oxide under 1s (250 µm samples).
• Achieve high conductivities even at 0.5 wt% 

after Gox thermal conversion.
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3D Printed Silicones – Flexible 3D Design for Organ-on-Chip Applications

• Flexibility of design and automation.
• True 3D microstructuring.
• Limited resolution (> 100 microns).
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3D Ink Design - Formulation

• Design of rheological properties of uncured formulations 
and mechanical properties of cured resins independently.

• Retention of fast curing even with opaque samples.
• Thixotropic properties suitable for extrusion-based printing.

Thixotropic Properties

Tuning Ink Mechanics
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Chip Design and Printing

• More compact and symmetrical design to avoid 
uncontrolled nutrient/growth factor gradients.

• Introduce pneumatic chamber in upper 
compartment.



Pneumatic Chamber for Biomechanical Actuation
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Predicting Deformation

• Simple pneumatic chamber connected 
to software controlled pump.

• In silico prediction of the deformability 
of the compartment.
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Mechanically Integrated Biomimetic Hydrogels

ECM Biochemistry
Physics/Mechanics

In situ gellation

Bonding
Long-term structure
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Mimicking the Cell Microenvironment

• Capture biochemical composition (cell adhesion, 
degradation, matrix deposition).

• Stiffness.
• Viscoelasticity.
• Porosity / morphology.
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Peptide-Based Cell Degradable Hydrogels

• Fast curing in physiological conditions.
• Control of mechanical properties and 

degradability.

Y. You, K. Suzuki, J. Gautrot et al. Biomaterials 2020, 120356
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Regulation of Cell Spreading and Secretory Phenotype

• Increased degradability correlates with cell spreading.
• Restriction of cell spreading correlates with increased 

growth factor secretion.
• Matrix engineering regulates pro-angiogenic phenotype.

Y. You, K. Suzuki, J. Gautrot et al. Biomaterials 2020, 120356
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Hydrogel Bonding in Thiol-Ene Hybrids

Stretching rate : 1mm/min

UV-curable 
Hydrogel resins
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• Thiol-ene based hydrogels and silicones are chemically 
compatible.

• Improved adhesion compared to Sylgard PDMS.



Rubber in Engineering Group – 04/12/20

Engineering of Stable Perfusable Microvasculatures in Microfluidic Chips

Stabilised co-culture
Perfusable vasculature
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MSC Co-culture Promotes the Formatin of a Mature Microvasculature

• Formation of perfusable microvascular network in chips.

• Interfacing with advanced multi-cellular in vitro models 
for safety/efficacy testing.

(+)(-)

F-Actin, CD31, DAPI

Dibble, Luo, Jones
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Pericyte Co-cultures for Stablisation of Microvasculatures

Impact on Microvasculature Structure

Attwell et al. Journal of Cerebral Blood Flow & Metabolism (2016).
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Long-Term Stability of Vascular Networks in Microfluidic Chips

HUVECs + Pericytes

Fibronectin
CD31
F-actin

Fibronectin

100 µm

100 µm

• Pericyte co-culture allows to stabilise microvascular 
networks for >3-4 weeks.

• Stable in multiple types of culture medium, even upon 
serum starvation.

• Compatible with implantation of more complex models.



• Thiol-ene PDMS display excellent properties for 3D printing in ambient conditions.

• Controlled mechanics and interfacing with hydrogels.

• Enables the fabrication of 3D chips for biomechanical actuation and the embedding of large 
complex multi-cellular tissue models.

Conclusions

6 mm
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