Multiscale modelling of thermo-mechanical deformation for the design, processing and behaviour of structural alloys

Roger C. Reed, Jianglin Huang, Fauzan Adziman, Enrique Alabort
Department of Engineering Science
University of Oxford

January 11, 2016

Background and motivation

Introduction

- Metallic alloys are needed for nearly all sectors of commercial enterprise/industrial activity.
- Examples include energy production/conversion, transportation—e.g. aerospace, automotive and shipping, construction and manufacturing, space and satellite communications.
- Primary metal production, alloy creation and design, integrated metallic products and alloy recycling account for 46% of all EU manufacturing value and ~11% of EU gross domestic product [1].
- But modelling and simulation methods are needed for the rapid invention and prototyping of new metallic products.
- Multiscale modelling across a range of length scales is a prerequisite for this.

Research activities: overview

Introduction

Superplastic forming

Student: Enrique Alabort
Superplasticity: a three-scale study

Deformation mechanisms

Length scale

Materials science
Engineering

Continuum modelling
Industrial application

© Rolls-Royce plc 2013

The deformation mechanisms

800°C

700°C

900°C
The continuum characterisation

Superplasticity

Microstructurally-based material model

High-temperature mechanical characterisation

The industrial application

Superplasticity

Twist and camber

Hot creep forming

Superplastic forming
Flexible forming

Researcher: Jianglin Huang

Flexible forming: overview & partners

- Flexible forming process design for closed-loop control
- Rapid process modelling for closed-loop control
- Close loop control of material properties in flexible forming processes.
- Application case studies
Flexible forming: case studies

Transformative manufacturing processes

Researcher: Fauzan Adziman
Novelty: Integration of microstructurally-sensitive models to the manufacturing processes.

Research framework

Transformative processes

Modelling

- Physically-based mechanics: (a) slip systems, (b) phase transformation, (c) dislocations.
- Effective representation of: (a) interface, (b) phase transformation.
- Analysis by means of: (a) crystal plasticity, (b) FEM.

Manufacturing parameters and optimization studies

Simulation results

- High temperature, high speed, etc.
- Target: achieve target state. (e.g., velocity) from an accurate model. (e.g., FEM).

Industrial partnerships

Modelling material behaviour

Transformative processes

2A-i. Physics-based composition-dependent crystal plasticity

Coupled with

<table>
<thead>
<tr>
<th>Strain</th>
<th>Yield stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>{σ_{y}}</td>
<td>{F}</td>
</tr>
</tbody>
</table>

The resolved shear stress

{$\tau = \dot{\gamma} \tau$}

Evolution equations for the plastic deformation gradient

{$F = \sum_{i,j} F_{ij} \, \dot{\gamma}_{ij}$}

Evolution equations for the mobile dislocation density

{$\rho = \rho_{0} \left(1 - \frac{\rho_{0}}{\rho_{s}} \right) \ln \left(\frac{\rho}{\rho_{0}} \right)$}

Dislocations-based slip rate:

{$\dot{\gamma}_{ij} = \frac{1}{A_{ij}} \frac{\partial \phi}{\partial x_{j}}$}

Simulation results
Modelling continuum behaviour

Transformative processes

Process zone – integrated multi-scale modelling

A schematic example of the integrated multi-scale modelling

Thermomechanical coupling transformations

\[\mathbf{Q}_i = \mathbf{Q}_i(\mathbf{u}_i, \mathbf{p}_i); \quad i = 1, \ldots, n_{\text{tot}} \]

Transformative flow (flow rule)

\[\mathbf{F} = \nabla \mathbf{u} + \mathbf{D} \mathbf{K} \mathbf{D}^T \]

where \(\mathbf{F} \) is the work conjugate of transformation deformation gradient.

Process modelling

Transformative processes

Rotary friction welding

A 2.5D axisymmetric model

High-speed machining

3D model
Conclusions

• A wide range of metal forming processes are being modelled at different strain rates and temperatures.

• The mechanical characterisation of materials is crucial. A new mechanical testing lab is being constructed in Oxford.

• Multi-scale and physically based models are the trend in metal forming processes.

Acknowledgements

The authors gratefully acknowledge EPSRC for funding (EP/K028316/1), Manufacturing Technology Centre and Thompson Friction Welding for industrial partnerships.