The use of elastomeric diaphragms in composites forming processes

Dr Oliver McGregor
Research Fellow

Composites Research Group
Faculty of Engineering
University of Nottingham
1. Introduction to Diaphragm forming

2. Diaphragm Characterisation

3. Finite Element Modelling

4. Conclusions and Future Work
Introduction

- Carbon fibre composites consist of a high strength and stiffness fibre embedded within a polymer matrix.
- Large automotive companies moving towards an RTM (Resin transfer moulding process) for composites manufacture.
 - High properties / Fast cycle times.
- RTM and other liquid forming processes rely on a separate preforming stage.
- Preforming stages are often labor intensive and difficult to automate.
- Diaphragm Forming is one solution to these problems.
 - Low capital investment
 - High flexibility

3D Preform creation
A diaphragm former with a bed size of $1.2 \times 1.6\text{m}$ has been developed at the university of Nottingham. Both double and single configurations are possible.

Objectives
- Understand forming limitations caused by features in component geometry
- Evaluate new material formats
- Evaluate the suitability of different diaphragm materials
- Estimate cycle times
- Support the design of a larger pre-production machines
Double Diaphragm Forming Process Steps

Stage 1
- Ply preparation
- Binder application
- Ply positioning

Stage 2
- Evacuate area between diaphragms
- Heat material
- Place tool in position

Stage 3
- Lower diaphragms and evacuate air beneath
- Cooling
- Demoulding
Diaphragm behavior is an important part of understanding the process.
- Friction
- Failure strain
- Fatigue behavior / Longevity of the bag
- Hole propagation
- Temperature resistance
- Thickness

It is also important be able to accurately model the behavior of the diaphragm in our FE model of the process.
Set-up similar to standard ASTM D 1894, ISO 8295:

- Aluminium table attached to Instron 5569 testing machine with 50N load cell
- Brick-shaped steel sled (100 × 50 × 25mm, mass 1.036kg)
- Connection to cross-head via angling line and pulley
- Measures both static and dynamic coefficients
- Can be used to measure material-material, material-aluminium and material-diaphragm coefficients
Fabric to Diaphragm

- Silicone diaphragms have different surface finishes on each side.
- Coefficient of friction for the silicon diaphragm is larger than Al-NCF (~0.25-0.3) and NCF-NCF (~0.4-0.5).
- Dynamic friction appears to be higher than the static friction.
- Aligning the stitches in the direction of travel reduces the coefficient of friction significantly.

![Graph showing static and dynamic friction](image)

Silicone Top - FCIM359

<table>
<thead>
<tr>
<th></th>
<th>Static µ</th>
<th>Dynamic µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone - 0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Silicone - 90</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Silicone - 45</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Silicone - 45 (Stitches 90)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Silicone - 45 (Stitches 0)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Silicone Bottom – FCIM359

<table>
<thead>
<tr>
<th></th>
<th>Static µ</th>
<th>Dynamic µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone - 0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Silicone - 90</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Silicone - 45</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Silicone - 45 (Stitches 90)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Silicone - 45 (Stitches 0)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Hole Propagation Testing
Diaphragm Failure

- Over 200 formings before first failure.
- Lower diaphragm failed due to large strains over the square edge at rear of tool.
- How do we measure fatigue? What properties are important?
Biaxial Testing

- 6 candidate materials tested – Stretchlon 350, Mosite, 3 silicones, 1 latex
- Two temperatures – RT, 85°C
- Three load cases – Uniaxial, Biaxial, Pure shear
- Two loading regimes – Monotonic, Cyclic

- Biaxial data shown (not taken to failure)
- Only Stretchlon 350 significantly affected by increase in temperature (polymeric material)
- Mosite and silicones all exhibit similar stress-strain behaviour
- Stiffness of latex is lower than silicones
- Silicones not always isotropic
• Three test configurations used: Uniaxial tension, biaxial tension, pure shear

• Non linear regression used to obtain fitting parameters from uniaxial and biaxial test data

• Pure shear load case used as validation

• Ogden Hyperelastic model (Abaqus)

• Non-linear stress-strain behaviour of rubbers

• λ – principal strain

• T – principal stress

• N, μ_i, α_i – material constants

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>μ_1</th>
<th>α_1</th>
<th>μ_2</th>
<th>α_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>silicone</td>
<td>2</td>
<td>150904</td>
<td>3.0918</td>
<td>813392</td>
<td>0.18451</td>
</tr>
</tbody>
</table>

Uniaxial mode

$$\lambda_1 = \lambda_U, \quad \lambda_2 = \lambda_3 = \lambda_U^{-\frac{2}{3}}, \quad \lambda_U = 1 + \epsilon_U$$

$$T_U = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i} (\lambda_U^{\alpha_i-1} - \lambda_U^{-\frac{2}{3}\alpha_i-1})$$

Equibiaxial mode

$$\lambda_1 = \lambda_2 = \lambda_B, \quad \lambda_3 = \lambda_B^{-2}, \quad \lambda_B = 1 + \epsilon_B$$

$$T_B = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i} (\lambda_B^{\alpha_i-1} - \lambda_B^{-2\alpha_i-1})$$

Planar (pure shear) mode

$$\lambda_1 = \lambda_S, \quad \lambda_2 = 1, \quad \lambda_3 = \lambda_S^{-1}, \quad \lambda_S = 1 + \epsilon_S$$

$$T_S = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i} (\lambda_S^{\alpha_i-1} - \lambda_S^{-\alpha_i-1})$$

Silicone Diaphragm Characterisation
Diaphragm Modelling

- Excellent fit for all three load cases
- Unit cell models pass all of the Abaqus stability checks
- Deformation modes are suitably captured by Ogden model
- Process can be repeated for other candidate materials as required

Fully Predicted
Diaphragm Forming FE Model

- An explicit finite element model has been developed in Abaqus.
- Diaphragm material uses Ogden Hyperelastic model.
- Uses data from picture frame testing to model behavior of carbon fiber.
 - Accounts for asymmetric behavior in NCF.
- Takes 1 hour to run on a standard office computer.
- Can be used with full scale automotive components.
Diaphragm Forming FE Model

- Colour coding used to identify problem areas according to excessive shear
- Wrinkles start to form in amber region, according to picture frame data
Comparison between simulation and experiment

- Very good agreement between simulation and experiment
- Yellow regions (simulation) agree well with wrinkles on real part
- Likely that some darting is required to overcome some of the major wrinkles
Ply shape optimisation

- Ply shape optimised using simulation to provide net-shape preform
- Perimeter shape is more rounded to conform to witness mark on tool

...... iterations

Initial

Optimum
Conclusions

- A diaphragm forming machine has been developed at the University of Nottingham.
- Material characterisation (diaphragm and fabric) has been performed to provide input data to the finite element simulation.
- A finite element model has been validated with experimental testing and can be used to reduce defects in components.

Diaphragm challenges:
- Long fatigue life
- Tear resistance
- Temperature + strain resistance
- Control of friction
- Allowing air evacuation
The use of elastomeric diaphragms in composites forming processes

Acknowledgements

The work was completed as part of the “Affordable Lightweighting through Pre-form Automation” (ALPA) project.

The authors gratefully acknowledge the financial support of the Technology Strategy Board (Project Ref. 101879).