Propellant-Insulant Bonding in Rocket Motors

Simon Torry
7/4/2017
QNETIQ/17/01388
Introduction

• Motor case liner (insulant) critical to the success of a rocket motor
 – rocket motors generate hot gases at temperatures (1750 and 3750°C) and high pressures (2.8 to 30 MNm\(^{-2}\))
 – propellant burns from the conduit to the chamber wall
 – heat could melt or weaken the combustion chamber body
 – pressure chamber failure; motor explodes; damage platform

Fig. 1. Cross-section of a typical rocket motor. A, chamber; B, head end dome; C, nozzle; D, igniter; E, nozzle convergent portion; F, nozzle divergent portion; G, port; H, inhibitor; I, nozzle throat insert; J, lining; K, insulation; L, propellant; M, nozzle exit plane; N, SITVC system; O, segment joint.

Rao et al Engineering Failure Analysis, 12(2), 325-336, 2005
Introduction

• **Catastrophic failure is prevented by using an insulant**
 – complex composition consisting of fillers, polymers and other additives
 – manufacture, performance and effectiveness are a function of synergistic interactions

• **Adhesives used in several motor components**
 – discussing issues with insulant-propellant
Insulant Requirements

• Requirements for motor case lining processes and material
 – insulant performance
 – insulant mechanisms
 – new materials and new processes
 – availability and cost
 – adhesion of the propellant with the insulant
 – compatibility issues (reaction of additive with propellant)

• Interactive interactions – generally no “drop-ins”
Insulant Requirements

• The components of the insulant are chosen to limit heat transmission – function of the propellant characteristics
 – high specific heats (acting as a heat sink)
 – low thermal conductivity
 – undergo endothermic processes such as phase changes (melting, vaporising) and/or decomposition
 – produce effective boundary layers generated from gaseous molecules insulating the insulants from the flame
 – cause transpiration cooling (transport of gaseous molecules through hot char cooling it down)
 – effective, resilient char formation
 – propensity of char formation rather than gas/volatile formation
 – fibres to reinforce/retain the char during ablation

• The propellant and insulant characteristics limit material choice for effective adhesives
Insulant Problems

• Bonding between the insulant and propellant
 – can be poor
 – significant failure mode

• When the propellant detaches from the polymeric insulant
 – additional propellant surface forms
 – upon ignition an extra burning surface forms
 – over-pressurisation, rupturing the rocket motor case
General Approach to Bonding Insulants

• Nominally two types of solid propellant

• Composite propellant
 – plasticised polymeric binder filled with a crystalline filler such as ammonium perchlorate
 – use addition type curing such as isocyanate-hydroxyl reaction to form polyurethanes
 – have reactive isocyanate available

• Double base propellant
 – nitroglycerine/nitrocellulose gels (sometimes crosslinked)
 – potential for reactive chemistry with the nitrocellulose hydroxyl species

• Ideally don’t want mobile low molecular weight side products
 – migration can cause degradation and changes in mechanical properties
General Approach to Bonding Insulants

• Ideally want to exploit the propellant chemistry to form
 – covalent bonds by reaction crosslinking species with the insulant surface
 – diffusion bonds from intermingling swelled polymers

• Diffusion processes can be difficult to achieve
 – bond temperature > glass transition temperature
 – entropy of mixing of similar polymers is low
 – diffusion line poor

• Typical insulants consist of
 – low Tg polymers
 – low surface energies
 – low reactivity
Primers for Composite Propellants

- Development of insulant rocket primer
 - bonding EPDM insulant to HTPB/NCO based propellant

- Used T-peel test to assess the peel strength
 - optimise the composition
 - optimise the cure time
 - measure effect of oxidative ageing 60°C upto 6 weeks

<table>
<thead>
<tr>
<th>LRP3 Material</th>
<th>Mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTPB</td>
<td>70.9 to 63.0</td>
</tr>
<tr>
<td>Chain extender diol</td>
<td>6.4 to 5.7</td>
</tr>
<tr>
<td>Fumed silica</td>
<td>12.0 to 10.7</td>
</tr>
<tr>
<td>Hindered phenol antioxidant</td>
<td>0.7 to 0.6</td>
</tr>
<tr>
<td>Trifunctional isocyanate</td>
<td>10 to 20</td>
</tr>
</tbody>
</table>

- Combination of covalent and diffusion bond
 - reaction of propellant hydroxyl with primer
Primers for Composite Propellants

- EPDM is a low energy surface
 - can be difficult to bond to

- Rather than rely on inter-diffusion of polymers, considered in-situ polymerisation of inter-penetration of polymers as a bonding mechanism

- Solid state NMR of EPDM based insulant
 - 27 to 30% of the ethylidene norbornene had converted to a crosslinked species
 - therefore double bonds available for further reaction
Primers for Composite Propellants

• 5-ethylidene norbornene
 – ring opening metathesis polymerisation
 – oxidation/hydrolysis

• Paint EDPM surface with functionalised norbornene
 – apply ROMP catalyst
 – in-situ polymerisation

• Followed polymerisation reaction by DMA
 – painted surface with norbornene/catalyst

• Poly(norbornenes) penetrate to 0.4mm of EPDM
 – surface enriched with functional groups
Primers for Composite Propellants

• Six EPDM-based liners
 – no treatment
 – roughen surfaces
 – chemically treated (poly(5-ENB, oxidised/hydrolysed), roughened

• All liners compatibility with composite propellant

• Bonding agent/primer increased the peel strength ten fold
 – failure mode propellant-liner interface

• Inert propellant model
 – failure mode in propellant near liner interface
Primers for Composite Materials

- **Surface treatment systems for polybutadiene-based insulants**
 - exploit the reactivity of the polybutadiene alkene backbone
 - based on silane
 - painted onto **fully cured** liner (low energy surface, no residual crosslinking species)

- **Five primers/bonding agents**
 - 1,4-bis(di-methylsilyl)benzene + Pt(0) catalyst;
 - octadecylsilane + Pt(0) catalyst;
 - 1,4-bis(di-methylsilyl)benzene + Pt(0) catalyst + HTPB LM20;
 - 1-(2-(1-aminoethyl)-dimethylsilyl)-4-(dimethylsilyl)-benzene; and
 - 1-(2-(1-aminoethyl)-dimethylsilyl)-4-(dimethylsilyl)-benzene + 1,4-bis(di-methylsilyl)benzene + Pt(0) catalyst + HTPB

Treatment 4 caused the liner and propellant binders to act as a monolithic material.
Novel Insulants

• Motor case liner programme – redevelop current and design novel insulant systems

• Literature survey 100s of insulant formulation

• Further down-selected to nine
 – NBR/PVC filled with carbon fibre and silica (vulcanised)
 – NBR/PVC filled with vapour grown carbon fibre and silica (vulcanised)
 – Silicone filled with carbon fibre and silica (addition cure)
 – Silicone filled with alumina fibre and silica (addition cure)
 – Silicone filled with vapour grown carbon fibre and silica (addition cured)
 – EPDM filled with carbon fibre and silica (vulcanised)
 – EPDM filled with alumina fibre and silica (vulcanised)
 – EPDM filled with alumina fibre and silica (peroxide cure)
 – EPDM filled with carbon fibre and silica (peroxide cure)
Small Scale Evaluation of Insulants

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Density/g cm⁻³</th>
<th>Casting Liquid Uptake/%</th>
<th>Phenolic Bonding</th>
<th>DMA – Tg/°C</th>
<th>Tensile – Strain ambient/%</th>
<th>Tensile – Strain -60°C/%</th>
<th>Tensile – strength/MPa</th>
<th>Tensile – P₁₈₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST359901</td>
<td>Silicone/silica/carbon fibre (addition cured)</td>
<td></td>
<td><1.3</td>
<td></td>
<td></td>
<td>>500</td>
<td>>500</td>
<td>>6.9</td>
<td>>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>1.3, <1.5</td>
<td></td>
<td></td>
<td><500</td>
<td><500</td>
<td>>6.9</td>
<td>>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>1.5</td>
<td></td>
<td></td>
<td><100</td>
<td><100</td>
<td>>4</td>
<td><4</td>
</tr>
<tr>
<td></td>
<td></td>
<td><5</td>
<td><5</td>
<td>= adhered</td>
<td></td>
<td><60</td>
<td><60</td>
<td><500</td>
<td><100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>5, <10</td>
<td>>-60</td>
<td></td>
<td><100</td>
<td>>-40</td>
<td>>-40</td>
<td>100</td>
<td><500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><100</td>
</tr>
<tr>
<td></td>
<td></td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><100</td>
</tr>
<tr>
<td>ST35A101</td>
<td>Silicone/silica/vapour grown carbon nanofibre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><100</td>
</tr>
<tr>
<td></td>
<td>(addition cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
</tr>
<tr>
<td>ST363901</td>
<td>Silicone/silica/alumina fibre (addition cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><100</td>
</tr>
<tr>
<td>ML041V1</td>
<td>EPDM/silica/carbon fibre (sulphur cured)</td>
<td><2.5</td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><2.5</td>
</tr>
<tr>
<td>ML041V2</td>
<td>EPDM/silica/alumina (sulphur cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><2.5</td>
</tr>
<tr>
<td>ML041V3</td>
<td>EPDM/silica/carbon fibre (peroxide cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><2.5</td>
</tr>
<tr>
<td>ML041V4</td>
<td>EPDM/silica/alumina (peroxide cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><2.5</td>
</tr>
<tr>
<td>ML057V101</td>
<td>PVC/polybutadiene-nitrile /silica/CF (sulphur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><2.5</td>
</tr>
<tr>
<td></td>
<td>cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
</tr>
<tr>
<td>ML057V3</td>
<td>PVC/polybutadiene-nitrile /silica/ vapour grown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
<td><2.5</td>
<td><4</td>
<td><2.5</td>
</tr>
<tr>
<td></td>
<td>carbon nanofibre(sulphur cured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><2.5</td>
</tr>
</tbody>
</table>

- Requirement to bond to a phenolic film ("sticks" to anything)
- Silicone bonding poor
 - low energy surface
 - low reactivity
Adhesion with Phenolic Film

*Phenolic cure is a condensation reaction – water produced. Cure under high pressure.
Novel Insulant Application/Processing

• Novel insulant processes for mixing liquid insulants
 – mixing using an acoustic mixer
 – resonant vibrating platform

• LabRAM ® mixer mixed silicone/silica/fibre
 – approximately 4 times faster
 – as no impellers/blades, the time to clean the LabRAM mixing vessel was 10 times faster than the horizontal mixer
 – additionally very little waste was produced
 – mixing caused self heating, described by a simple internal friction/cooling model

Bad mix

Good mix
Novel Insulant Application/Processing

- Would like to automate insulant manufacture

- Partner demonstrated that
 - a carbon-fibre filled silicone could be moulded into a metal tube producing liners 2mm thick and 500 mm long
 - insulant can be cured in-situ
 - the former can be removed from the mould without damaging the insulant surface

- However, analysis of the liners has shown that there were areas of concern
 - dimensional tolerance, porosity and inhomogeneity

- Additional work would have to be performed to produce flawless insulants
Silicone Insulant Bonding

• Originally silicone bonding poor

• Investigated a number of primer systems
 – Epoxides such as Epikote 828
 – Silicon containing species such as polydimethysiloxane diglycidyl ether, 1,3-divinyltetramethyl disolaxane, polydimethylsiloxane hydride, glycidoxypropyltrimethoxysilane, poly(hydromethylsiloxane)
 – polybutadiene-co-acrylonitrile carboxy terminated with epoxides and radicals
 – Two component base silicone
 – 5-Ethylidene norbornene + ruthenium ROMP catalysts

• 5-ENB and poly(hydromethylsiloxane) pre-treatments best primers
 – others treatments poor

• Pendant ethylidenes react with phenolic species in phenolic film creating a good bond
 – cf EPDM cure process with electron deficit phenolic resins (DG Guillot, AR Harvey, EPDM Rocket Motor Insulation, US patent 6787586 B2.)
Insulant Bonding

- Mechanical testing was performed using button test pieces
 - three temperatures; hot, ambient and cold
 - ML041 v1 and V2 failed in mostly in propellant
 - 5-ENB primed silicone need better adhesion with metal

ST363901, hot film/rubber

ML041V1, hot propellant/film
Conclusions

- **Insulants are critical to the success for motor performance**
 - consists of filled rubbers that limit heat transfer to the pressure chamber body
 - they have low Tg, low surface energy, most insulants have low polymer backbone reactivity

- **Adhesion of the propellant to the insulant is also critical**
 - need to prevent the formation of extra burning surfaces that could over-pressurise the motor and cause it to explode

- **Approach to bonding insulant to propellant is to use primers that form covalent or physical networks**

- **Achieved bonding by**
 - using isocyanate primer systems
 - exploiting of the liner reactivity and reaction with silanes
 - in-situ polymerisation creating novel inter-penetrating networks
 - converting non-reactive insulant surfaces to functionalised surfaces
Acknowledgements

• QinetiQ thanks the below for their considerable contribution to the programmes summarised in this presentation
 – Roxel
 – Artis
 – BD Technical polymers
 – MoD
 – DSTL

• This work was funded by Dstl through the Weapons Science and Technology Centre (WSTC)
Any Questions?