The timber frame market is today experiencing a level of growth not seen since the early 1980's. A survey carried out by Timber & Brick, the trade body for timber frame manufacturers in England and Wales, earlier this year showed that there had been a 25% increase in output during 1998 with a further increase in excess of 30% forecast for 1999.

This growth is largely taking place in England and Wales and is predominantly in the private housing sector. The level of ‘commercial’ work such as hotels, nursing homes, schools and churches also remains high, at about 35% of total output.

From one standpoint this resurgence is of course to be welcomed and justifies the massive effort and expense put in over the last 15 years by the Timber industry and other associated industries such as gypsum and insulation manufacturers in funding the Timber & Brick Information Council’s campaign to promote timber framed construction to consumers, specifiers and builders as a proven and durable method of construction with impeccable environmental credentials. The message that timber frame is ‘Simply a Much Better Way to Build’ to quote the campaign slogan, has now taken root in the hearts and minds of builders and consumers alike.

It can therefore now be said that timber frame is back on the map and is being considered on merit by all construction professionals as a viable alternative to other methods of construction.

The benefits of speed of construction, excellent thermal insulation qualities, high standards of finish and competitive cost are now being discovered by more and more builders, architects and engineers with major R&D initiatives such as the BRE/TRADA Technology Ltd (TTL) TF 2000 project at Cardington playing a major role in getting the message across on a technical level. The recommendations of Egan and before him Latham with the emphasis on construction efficiency and off-site fabrication are further reasons why the resurgence of timber frame is now a reality.

This growth benefits the whole wood chain and all the other associated industries, and is of course more than welcome. Notwithstanding this, there is a potential downside and this is that the industry may not be able to sustain the level of quality required in order to not only consolidate its increased market share, but to enjoy sustained growth.

In the writer’s view this will only be achieved if the industry invests heavily, not only in plant and premises, but equally importantly, in training at all levels.

In his report ‘Rethinking Construction’, Sir John Egan said “training is inextricably linked to quality” and the timber frame industry in England and Wales via the Timber & Brick Consortium, and in Scotland with SCOTFI, have put in hand a number of important initiatives to address this need.

Specific Timber and Brick initiatives include:

N.V.Q. FOR ERECTORS

The development, in partnership with Dudley & Cornwall Colleges of an N.V.Q. qualification for timber frame erectors which has been accepted by C.I.T.B., and is programmed to commence in the Autumn term of 2000. It will cover levels 1 & 2 and lead to a stand-alone N.V.Q. for the new trade of timber frame erector.

In addition, the designation will be available to existing experienced operatives who will undergo ‘on the job’ assessment. There will also be ‘bolt on’ N.V.Q. timber frame modules for bricklayers, plumbers and electricians which are being developed by C.I.T.B., also to be available, it is hoped by Autumn 2000.

QUALITY ASSURANCE

The Timber & Brick Q Mark is a third party accreditation scheme for timber frame manufacturers. The scheme, unlike ISO 9002, majors on product conformity; that is to say it ensures the end product is of the right quality, not just that there is a good management system in place which only ensures efficient production of indeterminate or uncontrolled quality. The scheme, which because of the group registration arrangements with BM TRADA is relatively inexpensive, is nonetheless wide ranging.

It covers structural, constructional and production design in Part 1 and actual manufacture in Part 2. Part 3 is under development with the assistance of a PII award from DETR and will cover the on-site erection of timber structures, a crucial area. Part 3 when complete in late Spring 2000 will provide the means of registering erection companies against industry approved and developed criteria as Quality Assured contractors.

As can be seen this project dovetails very conveniently with the N.V.Q. initiative, given that one of the criteria to be met before firms achieve accreditation will undoubtedly include a means of demonstrating that the operatives employed are properly trained and qualified to carry out their job, and clearly an N.V.Q. qualification will be one of the means of so doing.

CONTRACTOR TRAINING

One of the major causes of the problems experienced in the 1980’s was the lack of timber frame experience among housebuilder’s staff, both sales and technical.
The TRADA Technical Consultant
Richard White AIWSci

What does a TRADA Technical Consultant do?
TRADA’s Technical Consultants provide a specialist information and problem-solving service in the performance and technical specification of timber. This service is provided to a spectrum of parties, including members of the public, construction companies, architects, engineers and the wider timber trade, including merchants, joinery manufacturers, sawmills, and paint and stain manufacturers. TRADA’s Technical Consultants also frequently advise Insurance Companies, Loss Adjusters and Trading Standard Offices, as well as lawyers and other parties involved in legal disputes.

The Consultants are backed up by experienced TRADA architects, engineers and research scientists, and by extensive test facilities and scientific laboratories. They also have the support of TRADA’s Timber Information Centre which provides a very wide range of technical publications.

In addition, TRADA’s Technical Consultants maintain the unique “TRADA Helpline” a free telephone service, which responds to more than 10,000 calls every year, providing technical help and answers to allcomers.

What Qualifications and Experience are needed?
In the first instance, new recruits usually hold an Institute of Wood Science qualification, and are of diploma or graduate status in a timber or construction related discipline, or they may come with experience in the timber trade or in forestry. Whatever their background, they come to TRADA to pursue a specialist career in timber, its technical specification and use.

TRADA’s Technical Consultants, as with all groups under the TRADA umbrella, enjoy a robust culture of knowledge-sharing and of mutual help and support. Newly appointed members are given full training and support in the technical and practical aspects of timber in its various end uses. Training is also given in the sourcing of technical information and in the preparation of reports to TRADA standards. This training and support is given by experienced Consultants, who themselves came through the same learning curve and so understand the pressures involved in providing this professional service.

What does the Work involve?
Some of the work has to be said, is dirty and dirty. However, this is counterbalanced by work that is very interesting and diverse. For example, in recent times TRADA’s Technical Consultants have been involved with advising on the condition and strength of structural timbers at the Tower of London, Edinburgh Playhouse, listed timber bridges in Caerphilly, London Palladium, Newcastle High Level Bridge, Royal Naval College, and Chatham and Portsmouth Dockyards.

TRADA’s Technical Consultants have also advised recently on high-spiration joinery and other key architectural timber features for the Royal Opera House, Tate Gallery, British Library, the Houses of Parliament and the Millennium Dome. Our investigations also regularly involve items ranging from cooling towers to furniture, fence posts to doors and windows, tool handles to floors, and scaffold boards and ladders to pergolas and decks. Overseas work also features in the Company’s duties, most recently in India, Burma and the Middle-East, and currently in the Philippines.

New Recruits!
Study in wood science to AIWSci or BSc level is often under-utilised in the timber and associated trades and professions. However, it may be emphasised that TRADA’s Technical Consultants both use and continually develop their knowledge across the ranges of wood science and timber technology, whilst also developing other skills for example through inspection and technical report writing and through the provision of expert witness services. To maintain and build upon the high standards of work and experience of TRADA’s Technical Consultants we need new recruits.

For further information on current openings please telephone or write to Richard White, TRADA Technology Ltd, Stocking Lane, Hughenend Valley, High Wycombe, Buckinghamshire HP14 4ND. Tel: 01494 563091. Email: rwhite@trada.co.uk

The Web
http://www.IWSC.org.uk

The Institute’s Web pages have been revised and expanded and now contain:

- More detailed pages on Membership and Education including Membership application form and listing of the Institute’s course providers
- Review of the 1999 National Conference
- Pre-view of the 2000 National Conference with interactive booking form
- Listings of Papers published in Volume 15 of the Institute’s Journal
- Listings of the principal technical articles in Wood Focus issues 1 and 2
- Branch and regional contracts

Visit the Site and make sure that your colleagues do too –

ESPECIALLY IF THEY ARE NOT MEMBERS
quality control procedures of organisations not named, are not recognised by the British Standards Institute for use in load-bearing applications. Yet in spite of this well established code of practice, inappropriate panels are still being used on site.

Specifying plywood with the right engineering values for the job in hand and being able to identify its grade marks to check that it has indeed been used correctly, requires a clear understanding of product markings. But this is being made more difficult by the Plywood coming into the UK from countries, of which Korea, Brazil, Latvia, other parts of the far East and also Russia are just a few.

Some non-American overseas plywood is entering the UK with the marking CDX. To most in the building industry, CDX is traditionally recognised as a mark of approved North American Structural Plywood not for its consistency in production and thus suitability for load bearing applications as defined in the American Plywood Grades brochure. So the use of this coding could be taken as a guarantee of the same US quality. Of course it is not American CDX at all and does not have BSI approval for use in the UK for structural applications. So a clear understanding of how to read the marks is essential.

APA - The Engineered Wood Association is a leading authority on structural wood panels. Its technical brochure ‘American Plywood Grades’ explains exactly how to read and evaluate American trademarked plywood and is available free of charge from our technical office on 01202 201007 or you can download a copy from our website www.apauk-ireland.org. Every APA panel has a trademark stamp, usually on the back, on which fail details of that panel will be found, covering such information as:

- grading
- span rating (maximum separation of supports)
- thickness
- exposure durability
- classification
- regulations controlling manufacture
- mill number (manufacturer)

Another important area on a construction site is the provision of falsework e.g. concrete formwork, staging or other support systems. These have to carry loads, but for a temporary period only. However, with the increase in scale, frequency and complexity of falsework application, the need for authoritative guidance has grown accordingly. This has led to the publication of BS 5975: 1996 - Code of Practice of falsework. The new edition of this code brings it into line with BS 5268 Part 2. As to the design, erection and use of concrete formwork, the authoritative publication issued by the Concrete Society ‘Formwork - A guide to good practice’ is the bible.

At a less regulated level of activity, plywood is often used as temporary cover to trenches or drains over which workers need walk. Although there are no legal requirements to use structural plywood it makes sense to use plywood for which structural adequacy can be proven i.e. structural plywood. Failure to follow such common sense criteria could result in the Health and Safety Executive asking questions about the suitability of product and whether proof of structural adequacy can be provided.

Quality auditing procedures established by APA - The Engineered Wood Association are some of the most stringent in the world. Each plywood mill has a minimum of three audit visits a month, when production procedures are checked and finished panels sampled. APA trademark stamps remain the property of APA not the mill so the threat of withdrawal of trademark stamps can be used by APA against a member mill if, occasionally a mill fails to correct faults. The immediate adverse impact on sales means it is in the mill’s best interest to keep quality in place. APA member mills produce approximately 70% of the structural panel products and over half the glued laminated beams manufactured in the US. It also represents a significant number of Canadian OSB producers. One of APA’s most important functions is quality inspection and testing. It maintains seven quality testing laboratories in key production regions and a 3.400 square metre research centre at its US headquarters in Tacoma, Washington State.
USA TIMBER-BRIDGE CONSTRUCTION

The publication of this article, by Richard M. Gualkoski, originally from a NATO workshop, is printed by kind permission of The World of Wood, Journal of the International Wood Collectors Society USA. It was printed in Volume 51 number 12. The first part of the article was published in the Autumn edition of Wood Focus.

(Part 2)

Railroad bridges in the USA,

Historically in the USA, the predominant material used in railroad bridges was timber, specifically the timber-trestle bridge. At the turn of the 19th Century, the development of steel focused attention on longer spans and the use of timber trestles diminished in subsequent construction.

However, the railroads have many timber bridges that have been in place for 75 years or more. Maintenance was good and they are in various states of condition, but still in use. In recent decades, train-car loads have increased significantly. Presently, the typical design axle load is 66 kips (66,000 pounds), but the requirement is to be increased to 76 kips soon.

Consequently, the railroad industry has developed interest in field-testing existing timber-trestle bridges to determine capacity, field-testing bridges strengthened with sleeper members, and controlled laboratory testing of full-scale bridges. As the availability of large timbers has diminished or been controlled, interest in strengthening methods or new construction methods relying on smaller timber exist, too.

With the Association of American Railroads, CSU initiated a comprehensive load-testing program. In 1995, exhaustive field tests were conducted on three, carefully selected, open deck, timber-trestle bridges in Colorado.

in three directions statically, by ramp or dynamically. Controlled vertical ramp loads and sinusoidal dynamic tests were conducted. In addition, the three-car train unit (total weight over 880,000 pounds or 3,916 kN) was used statically in more than 100 load positions. Finally, a set of moving-train tests was done at various speeds. The objectives were to study existing load path under static and dynamic loading. In 1996, the 3-span bridge was strengthened and later retested for comparison. A full-size 3-span bridge was built in the laboratory and will be tested at each stage of construction to examine various construction and retrofit options.

Trends, future of timber bridges

Development of timber resources for even long-span bridges is technically achievable, and many case studies exist in the USA and western Europe to attest to this reality. The greater challenge is to foster a broad-based desire and engineering capability to achieve such bridges, and to solve the "real" and "perceived" constraints of wise use of the tree resource.

In countries where modern timber-bridge technology would be a new initiative, some misconceptions may be in place or encountered. A certain bias against wood as a material exists everywhere. Some engineers consider wood a plain, ordinary material for which the technological development is minimal.

Specifically, for some, wood is considered a low-technology material whose performance is perceived from a track record of many years ago. Wood is mistakenly thought of as having low strength, requiring massive sizes, being subject to rapid decay and sustaining fire.

These misconceptions occur despite the reality that wood is our most complex construction material, and the state of wood science and technology is markedly advanced. Modern materials have overcome these limitations of the past. Wood products are in a high "tech." arena and provide significant advantages.

With proper engineering, the upper limit of application of wood in bridge construction is considerably higher than typically thought by society, or by architects and engineers either unfamiliar with its real potential or lacking full technical understanding of the material.

Inefficiencies in behaviour and cost primarily occur from the use of improper or unwise framing configurations for wood. Detailing that overlooks the special aspects of wood or are left unprotected from moisture will result in poor performance of a timber bridge.

Some inexperienced engineers adapt steel- or concrete-bridge concepts to timber systems. This can lead to some poorly conceived or implemented projects and resulting bad image. Thus, the availability of special education focused on modern timber construction is prerequisite for architects and engineers interested in using timber as a bridge-construction material.

Quality control is vital in producing any material. For wood, it is necessary to effectively control the manufacturing process for strength graded lumber and laminate materials. For economy, such sorting is critical before assembly or into composite materials (e.g., laminated beams) or reconstitution (e.g., laminated veneer lumber).

It is advantageous to place stronger or stiffer materials where they are most needed. For example, laminated beams should have the strongest material as its outermost laminations and weaker ones in the interior. The jointing methods for achieving large member size (length and depth) need proper control too.

Failure in bending is likely to occur at a finger joint or a knot close to one. Unless joint strength is achieved, some low-strength laminated members will be present in supply. Proof loading (loading the joint beyond the tensile or bending design level) finger joints is used in production, but is cumbersome and time consuming.

Rigorous studies of finger joints were evident in recent years, and they are much better understood. Automated, nondestructive methods to monitor joints and identify defectives ones in laminating stock assembly of members are possible and would help.

Machine stress grading via production-line "flexural" tests (based on correlating modules of elasticity to strength) has existed for two decades. However, this
can be expensive and not readily affordable in developing plants. More advanced technologies for examining wood exist.

Sonics, ultrasonics, acousto-ultrasonics, acoustic emissions, tomography, X-ray imaging, thermography and nuclear techniques, among others, are being used. Primarily, these were for condition assessment such as examining moisture content, density, detecting deterioration and decay, evaluating stiffness, monitoring surface roughness, locating defects and other physical characteristics.

However, ultrasonic methods exist to accurately determine solid member strength so that better sorting can be done after production. Currently, such methods are being used to allow acceptance checks of delivered material, and to determine some properties of in-place material.

Tests have shown that the strength is higher and variability less for natural logs than for large pieces (lumber) cut from them. In essence, nature generally produces a better product than humanity. Cutting and assembly introduces synthetic complications that weaken the material.

Thus, round poles have an inherent advantage over sawn lumber and timber. Applications in which they can be employed would be more economical. Some needs in nondestructive evaluation of wood are apparent. The abilities to determine strength of laminated beams and deteriorated materials are paramount.

The former is being done, compounded by the related issue of detecting finger-joint resistance. The second requires the ability to detect location and extent of deterioration, and relate it to a quantified indicator of the consequence to member strength. Success in the latter can help in assessing capacity of existing timber bridges more dependably than by analytical rating methods. A more advanced need is to detect degradation and approaching brittle failure during load tests of in-place material.

Species, genetics, climate, exposure harvesting, milling, grading procedures and jointing and assembly into products are key factors affecting mechanical properties of wood and its products. In total population, wood and wood products are extremely variable in their physical properties. Traditionally, design stiffness and strength values for wood and timber were, and still are, established by consideration of sampling complete populations, be it by species, grade or other artificial separations.

Two major directions in statistical codification of wood-design properties are “in-grade testing programs” and “load and resistance factor design” (LRFD). Each reflects a striving to statistically characterize a complete sub-population of wood products, and offset the lower tail-end values as a mathematical point of demarcation between unacceptable and acceptable resistance. In effect, the larger proportion of the medium and high resistance material is penalized by the acceptance of the probability of having low resistance occur.

Whether by the past use of lower 95-percent exclusion limit (5-percent fractile) of strength, or by emerging use of a safety index in LRFD for setting the base resistance for codification of measured resistance into allowable stresses, the implication is weakest members in a sub-population control the permissible stresses.

This is in contrast to steel, wherein the industry has developed a wide range of material grades with modest variation about the mean. Thus, designers can dependably “select” steels from a range of “resistances” (types and grades) to match the strength and exposure requirements.

Dynamic impact testing of a guarrail system

In contrast, wood is penalized by conservative lower-limit strengths. The pre-eminent challenge in timber-bridge construction is to identify, with high dependability, the specific properties of individual pieces.

Environmental considerations

The environmental and ecological aspects of accessing forests for resources are of increasing importance. Attention to and debate about the wise and sustainable use of wood fibre, and protection of the forest and ecosystem, are universal.

Much more is known about the science and silviculture of forest growth. Extensive research on the control of damage due to infectious insects is also ongoing. Computer tools provide better means to monitor and manage forest growth (or depletion).

Clear-cutting of trees, contested as both visually imposing and ecologically damaging to the forest and ecosystem, is being more closely examined and debated. Managed harvesting of trees is imperative to re-growth of the forest, and approaches to this are improving. Virtually every fibre of the tree can now be used. Reconstituted products use veneer peeled from even low-grade logs. Materials otherwise wasted, such as peelings and sawdust, are used in panel products such as particle board. Logs with many defects can be reconstituted into laminated veneer lumber (in population, stronger and less variable than solid, sawn dimension lumber), wafer board, oriented strand board and other “high-tech” products. “Waste” is also usable in methanol production for developing efficient fuels.

In contrast to other materials, energy of wood-related production and construction is low since steel-producing furnaces, welding, flame cutting, production of cement and other energy-demanding processes are avoided. The deleterious environmental effects of producing alternate products are of concern, particularly when plant modernization, efficiency and containment of pollutants are lacking.

Standing trees with older wood hinder new growth and are susceptible to biological attack, which can spread throughout a forest. In reality, expansion of the use of timber construction fosters forest conservation and new plantings needed to ensure regeneration and life of the forest.

Ability to selectively identify the stiffness and strength of individual wood members is progressing. Achieving this would allow designers to use them “selectively,” putting strongest pieces where most needed. The beneficial outcome would be dramatic since a) less of the “better” material would be wasted, b) marketing less production of “better” material at value-added premium prices could result, and c) demand for older growth trees would be reduced or more controllable without consequence to industry. Similar rationale applies to the assessment of standing trees for harvesting and production planning.

There is a compelling need to identify physical characteristics of standing trees. This capability would foster harvesting for assigned (graded) use in different end products. It would also provide a means to nondestructively monitor the consequences of different forest-management approaches. This implies the need to develop practical means to use such high technology.
In 1814 George Walker started a haulage business in the village of Syston near Leicester. At a date that is not clearly recorded, the Walker’s haulage business began to handle round timber. In those days this was a fairly predictable extension of the operations.

Still managed as a family concern, on the sudden death of the senior Walker in 1914 his son, Harry, then aged 21, found himself in charge of the business, together with a substantial stock of logs.

Progress from this date was substantial as a further predictable extension of the business was made, the business started sawmilling, which went on to become the dominant activity. In 1952 the business was incorporated as a Limited Company, and in 1978 relocated from the village centre site it had occupied since 1814 to a new site on the edge of the village, a village that was expanding rapidly to become a town. Harry managed the firm until his death in 1973.

Through the 1980’s the operation stagnated due to the lack of a clear strategy, and under investment. This resulted in a conservative management style, increasingly out-moded operations and a failure to position the company in markets that were anticipating the changing patterns of the time.

In 1989 Rob Toon, a wood science graduate of the University of Wales, Bangor, returned from forest management work in southern Africa to become Managing Director, and take over the business from the existing directors who had been with the firm since the end of World War 11, and who were due to retire, one of whom was Rob’s father.

This initiated a decade of radical change. It was clear that a small privately owned sawmill could not compete in the bulk production markets, and that such mills, solely concentrating on the general sawmilling of home grown timbers, had a very finite future. To secure the future of this business Rob and his team firstly identified the target markets they wanted to compete in. The company withdrew from high volume work, and simultaneously diversified and specialized to take advantage of opportunities to add value. The added value came from exploiting the professionalism and expertise of the workforce at all levels to lever up the margin on the work it performed. The company was moving from being production led to service led, a situation that generally defines a lot of successful businesses in the Britain of the 90’s. It’s not what you can produce, it’s what you can sell at what margin that counts.

In the late 1990’s and now at the start of the new century, the results of these decisions are paying off The acquisition, in 1995, of a substantial sawmill and log yard at Thurlaston, near Hinckley, enabled the company to stop all primary processing activity at the Syston site concentrating it at Thurlaston. This has been a defining opportunity in that it allowed the Syston premises and operations to further concentrate on sales and margin issues. Substantial new offices have been erected and the whole site laid out to stock items and generally made customer friendly. The company produces in the region of 40% by value of what it sells, compared to over 90% when Rob first took over.
The Syston premises have many advantages, not the least being its location within about 6 miles of Leicester City center and half a mile from the A46, providing fast links to the M1 and other major roads.

In addition to these activities at Syston and Thurlaston, the business includes George Walker (Tree Care) Ltd, a wholly owned subsidiary company, which, under the direction of a professional arborist, undertakes a full range of arboricultural work, tree planting and maintenance for a wide range of clients. These include local authorities, private land owners, building developers, landscapers and house owners. Tree surgery and felling in urban locations is the core business here.

Rob Toon, with his Bangor University background and later studies at Buckingham Chilterns University College on their MSc course, is well aware of the value to both the company and the individual of training. In 1994, Richard Toon (not a direct relation of Rob, Toon being a local Leicestershire name) became the first fully Distance Learning student in recent times to take the IWSC Certificate course with regular tutorials provided by David Woodbridge. Richard passed the examination with a Credit. Another staff member is about to embark on this course under David’s guidance.

The stock range is in response to customer demand, and the facilities to add value through further working is a feature that is very obvious when one sees the items for sale. A predominant theme is the utilization of timber products in garden and landscape design. On site at Syston is a carpenters’ workshop that can produce bespoke items in wood, and a fully equipped saw-doctoring workshop, an unusual service these days, but one which is well used at Syston. To meet the fast developing demand for timber decking as a garden feature, Walkers have contracted with a Scandinavian mill to import Baltic redwood, kiln dried and machined to the traditional decking ribbed profile which is pressure impregnated at Syston in their CCA preservation plant.

At the Thurlaston sawmill, with its large capacity head-rig, specialist conversion can be carried out, and logs of up to 1.2m diameter and 8m length can be cut. This mill concentrates on specialist cutting of homegrown roundwood, and is able to offer Spruce, Pine, Larch, Douglas Fir and oak.

1.2m diameter and 8m length can be cut. This mill concentrates on specialist cutting of homegrown roundwood, and is able to offer Spruce, Pine, Larch, Douglas Fir and oak.

So what of the future for George Walker Ltd? “The business must continue to grow and increase its ability to deliver higher sustainable profits”, says Robert Toon. One way in which this could happen would be to find suitable premises where they could replicate the success of the Syston formula in a new geographical location.

Specialist markets have always featured in the company’s activities and it is interesting to note that Walkers employed, until he retired in the 1970’s, the last known full-time oak cleaver. One of his last jobs before retirement was the full set of hand cut oak shingles for the renovated roof of Anne Hathaway’s cottage.

The IWSC gratefully acknowledges the financial support that George Walker Ltd has given towards the publication costs of this issue of Wood Focus.
Spruce in North America. A review of Picea Species, the regions in which they grow and their individual characteristics and attributes

by Alan Brooks, Editor of World of Wood

For many years, I had cultivated an interest in, and collected information on, several North American forests and their ecosystems. This quest included identifying trees and wood, although it excluded the gathering of wood samples and herbarium specimens except for short-term projects.

Residing near the eastern USA’s mixed forests, my interests focused on the spruces (Picea spp.), pines (Pinus spp.) and other northern conifers mingling with the broad-leaved American beech (Fagus grandifolia), maples (Acer spp.), oaks (Quercus spp.) and other deciduous trees.

After moving to the fringes of the Rocky Mountain forests and pinyon-juniper woodlands, I began to learn about western wild plants, both woody and herbaceous.

Among them are the coniferous evergreens called spruces. Although associated by many people with the cooler, moist, temperate forests of the Northern Hemisphere, some spruces have permeated south, generally along mountain slopes.

Spruces are at home in cool, wet environments because their needles cannot control water loss, and the trees have shallow roots and no taproot. Typically tall, straight and conical shaped at lower elevations, variations in soil and climate may alter their forms in other ecosystems.

Most species of Picea that grow in Asia, Europe and North America share similar characteristics. As a rule, the trees are shaped like steeples and bear short, sharply pointed, four-sided needles. A notable exception is Sitka spruce (P. sitchensis), whose needles are flattened.

When crushed, the needles emit a pungent aroma. The peg-like stigmata or base of each needle remains on the twig after the needle falls, making the twig feel rough to the touch. Years ago, I had heard the bare twigs called “sardines’ spine.”

The mature cones of spruce hang from the branches, in contrast to the erect cones of true fir (Abies spp.). Each thin, papery scale comprising the spruce cone contains two seeds readily eaten by squirrels, birds and other small animals.

Diverse ecology, growth patterns

Some differences in growth habits, range, appearance and other dendrological characteristics may offer help in identifying the following North American species:

The short growing season in Alaska and northern Canada stunts black spruce (Picea mariana) and white spruce (Picea glauca); specimens more than 100 years old may reach only 10 feet high. But they tolerate permafrost (permanently frozen soil) better than most woody species.

White spruce in Alaskan river valleys, perhaps sheltered from harsh storms, often grows more slender and spire-like than specimens found elsewhere in North America. However, it does not command the forest ecosystem as much as black spruce.

Woodlands in cooler regions dominated by black and white spruces follow a natural succession that includes alder (Alnus spp.) roots adding atmospheric nitrogen to the soil, and aspen, poplar (Populus spp.) and willow (Salix spp.) leaves adding humus to enrich the soil even further.

South of these permafrosted timberlands, the fog-shrouded temperate rain forests of Canada and the USA flourish along the northwestern edge of North America, from southeastern Alaska to southwestern California. No wider than about 100 miles, this strip of coniferous forest boasts some of the world’s taller firs, Douglas-firs (Pseudotsuga menziesii), hemlocks (Tsuga spp.), redwoods (Sequoia sempervirens), western red cedar (Thuja plicata) — and spruces.

In these Pacific coastal forests, their sizable arboreal inhabitants grow not as isolated behemoths but as large assemblages whose canopies may tower almost 250 feet above an eternally damp ground. Among them is Sitka spruce, which may reach up to 225 feet and six feet in diameter. But its thick, buttressed trunk does not approach the enormity of bole flanges seen in the tropical rain forests.

This species is found along the Pacific coast of Alaska, British Columbia and the northwest USA. It is the dominant conifer in southeast Alaska’s maritime forests, growing from sea level to about 1,500 feet in elevation. A prolific seed producer, it is the only coniferous species that grows on Alaska’s Afognak and Kodiak islands.

Sitka spruce and other trees in the wettest temperate rain forests often can be found growing in straight lines. This linearity among rainforest species in North America stems from the “nurse” logs, or fallen trees that decay more slowly than their counterparts in the warmer tropics.

From moss mats covering the nurse logs, the young spruces and other species tend to grow in single file, aligning with the log that nurtures them. Find an older, half-rotted log and you may see adolescent trees standing in perfect columns.

You also may see a young spruce that germinated atop a rotting, upright snag. Its roots, growing down the already dead host tree in search of soil, resemble the Florida strangler fig (Ficus aurea) entwining its more tropical and live victims.

But, in the higher and drier slopes of the central and southern Rocky Mountains and surrounding plateaus in western USA, you will not find nurse logs or the arboreal linearity of the Pacific coastal rain forests.

In these subalpine forests, you likely will

<table>
<thead>
<tr>
<th>Species</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea mariana</td>
<td>Black spruce</td>
</tr>
<tr>
<td>Picea engelmanii</td>
<td>Engelmann spruce</td>
</tr>
<tr>
<td>Picea rubens</td>
<td>Red spruce</td>
</tr>
<tr>
<td>Picea glauca</td>
<td>White spruce</td>
</tr>
</tbody>
</table>
find Engelmann spruce (*P. engelmannii*) hugging the ground as a scraggly shrub, its branches abraded by wind-borne dust and debris. On the lower slopes with adequate moisture, the species may grow to 120 feet and three feet in diameter. Two of seven native USA species, Engelmann spruce and blue spruce (*P. pungens*), have growth ranges extending almost to Mexico. Blue spruce’s growth range encompasses the Rocky Mountain states from Idaho to Arizona, and from Wyoming to New Mexico. But it also is widely planted as an ornamental.

Although the least tolerant of forest shade among members of this genus, blue spruce’s deeper roots make it more wind resistant. The wood shows similarities to white spruce, but is brittle and knotty. Red spruce (*P. rubens*), with its long branches and grey- to red-brown bark, is commonly found in the mountains of New York and New England, extending south to east Tennessee and west North Carolina. Among the rarest North American conifers is Brewer spruce (*P. brewerana*), also called weeping spruce because of its long, pendulous branches. This rare tree species is restricted to the north slopes of the Siskiyou Mountains in southwestern Oregon and northwestern California.

Spruce wood and influences

Spruce wood is light and soft, but strong, straight-grained and finely textured with an attractive, satiny luster. The wood is resonant and used to make sounding boards for guitars, and to build organ pipes and pianos. Although the wood has small, scattered resin ducts, it is not considered resinous; when used for food containers, it imparts no unpleasant taste or odor on the contents.

Engelmann spruce bears the longest fibered and lightest weight wood within this genus. Sitka spruce in Alaska and northern Canada often yields wood whose growth rings require a magnifying lens to count; in Washington’s Olympic Peninsula, your unaided eye usually suffices.

Three members of the genus serve as state trees of Alaska (Sitka spruce), Colorado and Utah (blue spruce) and South Dakota (white spruce). Three species also are the official provincial trees in Canada — black spruce, red spruce (Nova Scotia) and white spruce (Manitoba).

Black spruce

[Image of black spruce]

Ethnologically, most readers know that the immutability of appearance of spruces also generated a new word in the English language that goes beyond the tree name.

The origin of the word may have come from the Middle English *sprewse*, apparently an alteration of the Old French *pruce*, which was derived from the Medieval Latin *prussia* that later became *Prussia*. And, it likely was the Russian word *spruce*, referring to a fine grade of leather, that led to our English verbs “spruce” and “sprucing,” adverb “sprucely” and related adjectives and noun (“spruceness”) alluding to someone’s dapper refinements.

In addition, the name describes a colour suggesting greenish black, although I have heard “spruce” also used to describe a dark greyish hue. But defining this spectral notation, like many less-common tints, probably will remain “in the eye of the beholder.”

This article is taken from the World of Wood Volume 52 Number 10 and is reprinted with the permission of the Editor.

Utilizing Wood to the Full

Scaffolding structure in Berne Switzerland using spruce poles and exploiting the versatility of wood for the metal fixing brackets

Photographs by David Woodbridge 1997

IWS Conference and Study Tour 2000

The Marriott Goodwood Park Hotel
Chichester
Study Tour 28 April
National Conference 29 April

IWSc 2000 Conference and Study Tour will emphasise the environmental aspects of growing, harvesting, using and managing the disposal of timber and timber-based materials. An outstanding programme of expert speakers from the UK and internationally has been assembled to address issues ranging from forestry and global environmental issues, life-cycle assessments of timber uses, R&D innovation in the sector, waste management issues and e-commerce opportunities.

The Main Sponsor of this year’s Conference is TRADA in addition to which TRADA Technology Ltd will be binding and distributing the conference papers.

The papers and presentations will give you an invaluable resource of absolutely up-to-date information on subjects of vital concern to our industry.

The conference day is also complemented by a fascinating (optional) study tour in the South Downs area to see at first hand local forestry management, hardwood and softwood processing and the work of the internationally renowned Weald and Downland Museum on conservation of historic buildings.

A delightful country park hotel is the setting for the Conference where we are sure that delegates will be able to relax and make the most of the superb technical programme, recreational facilities and enjoy an informal and social atmosphere.

The Institute of Wood Science and all our sponsors look forward to welcoming you to the IWSc 2000 Conference.

Dr Richard Murphy, President

HAVE YOU BOOKED YOUR PLACE?
BRANCH NEWS

London and Southern Branches

The London and Southern Branches’ excursion to Salisbury Cathedral, at which the writer was present, was reported in the Newsletter for Spring 1999.

This short additional report, with photographs taken by the writer at the time, illustrates some of the historic and often stunning timber work in the main roof of the Cathedral. (The total area of the Cathedral roof is 2½ acres and the weight of lead covering 418 tons).

During the first half of the 18th century Francis Price, author of The British Carpenter (1736), was Clerk of Works to the Cathedral and in the course of his duties was responsible for some particularly fine timber construction work in the repairs to the East Crossing roof (figures 1 and 2). The complexity of the roof intersections can only be truly appreciated by being in the roof itself. Nevertheless the photographs do give an indication of the complex structural design that Price executed.

During this period other reinforcements to the roof were carried out. Figure 3 shows Price’s supports and braces in the North Transept.

The Thames Valley and Chilterns Branch have a visit to the Cathedral scheduled for the 29th February 2000.

D.E. Woodbridge FIWSc

Yorkshire and Humberside Branch

As I am sure many of you are aware, the Yorkshire and Humberside Branch has been rather inactive for the last year or so. The future of the Branch depends largely on the enthusiasm and commitment of members as well as the Chairman, Secretary and Treasurer. The region is steeped in timber trade history and has a very bright future ahead. Shouldn’t this be reflected in a strong Institute Branch?

Several proposals for meetings this year have already been submitted but I would like to hear from any members who have views on how the Branch should operate or activities that they would like to attend. Contact me by phone: (01977) 671771 or E-mail: Neil.Ryan@hickson.co.uk

Neil Ryan AIWSc
Branch Chairman

Scottish Branch

The following details have been edited from a circular letter and questionnaire sent by the Chairman of the Scottish Branch in January. This is part of an initiative to establish a more progressive and productive range of Branch activities in Scotland.

Choice of Venues -
Edinburgh / Glasgow / Stirling / Dundee

Choice of Subjects -
Timber in building / glueiam / timber frame / environmental issues and forest management / timber protection and preservation / wood based panel products / homegrown timber production and uses / historic buildings and ships.

Choice of Visits -
Sawmill / buildings of note / forests / panel products manufacturing plant.

Anyone interested or with further suggestions should contact:
Andrew Gibson AIWSc (Chairman)
11A Carmichael Place, Langside, Glasgow, G42 9UE

or

IWSc Scottish Branch Secretariat University of Abertay Dundee
Bell Street, Dundee, DD1 1HG
Tel: 01382 308640 Fax: 01382 308663
e-mail: mitjwp@tay.ac.uk

Australian Branch

CSIRO has reduced the level of appropriation funding to forest products research at its Clayton Forest Products Research laboratory by $1.4 million per year for the next three years, starting in July 2000. In addition, funding for the Cooperative Research Centre for Hardwood Fibre and Paper Science will not be renewed - the Centre is based at Clayton and involves a significant number of the Laboratory’s staff. The result of these two impending losses of funding has resulted in 37 staff leaving the Laboratory, or about 47% of its human resources. Gone will be biodeterioration work, softwood drying, wood adhesives chemistry, pulping and bleaching, and much of the wood science, both Harry Greaves (Branch Chairman) and Andrew Rozsa (branch Secretary) have now left CSIRO after a collective service of more than 60 years; other institute members have also left. However, the Branch will continue to operate and to hold its usual seminar functions at Clayton.

On a brighter note, the Forestry students of the School of Forestry, Creswick, University of Melbourne have established a Students Chapter of the Institute of Forestry and the Institute of Wood Science, significantly swelling the Australian Branch student numbers.

Dr Harry Greaves FIWSc
Branch Chairman

South African Branch

At the beginning of 2000 the Branch membership is 15, with one patron. This includes 4 persons who were members before the commencement of the exercise to set up the Branch. Members range from university professors to practicing sawmilers and timber processors.

Members are spread from Cape Town to Gabarome to impumalanga in the east, spanning distances of about 1500 Km. This will make the logistics of Branch meetings very difficult and the first objective will be to publish Newsletters in the most prominent trade journal, Wood S.A. & Timber Times.

The drive to recruit more members continues.

Don Priest FIWSc
Branch Chairman

Figure 1

Figure 2

Figure 3. (Composite of two photographs showing full configuration)
During 1999 Institute examinations were held in March, June (Ireland), September and October. (71 passes overall).

The year was exceptional in that the examination held in Ireland was for a substantial group (19 passes) organised by Dr Jos Evertsen, Chairman of the Irish Branch. The October examination was also special to cater for a training programme organized by Glenn Sharpley of BCT. In the current year the UK examinations will revert to the two per year and will be on March 17th and October 6th.

In the year just passed the top student was:

First - Mr Alan Fox of Bowmont Forest Kelso. It is hoped that Mr Fox will be able to attend the National Conference 2000 to receive, in person, his award and the Timber and Wood Products Cup.

Second - Mr Pauric Nolan of Coilte, Ireland.

(The prize was not awarded in 1998, the year in which Mr Fox actually completed the course).

It is interesting to note that Mr Fox was a distance learning student, notwithstanding the quality of his course work was of a very high order and he ranked top in the examination marks for the period under review.

Associate Passes
Harvey, Paul
Kelly, Peter
McNee, John

Certificate Passes
Bell, Paul
Brookes, P
Brooks, Emma
Charters, A
Cooke, Eugene
Coxhead, G
Crompton, S
Curniffe, Dermot
Dalton, James
Doyle, Michael
Eagles, Sarah
Easton, Robert
Egan, Nicholas
Eldridge, Christopher
Farmer, Philip
Faulkner, Stuart
Fitzgerald, Paddy
Flanagan, Frank
Fort, Raphael
Foster, Mark
Green, Nicola
Griffiths, Sonnie
Hession, Tom
Hughes, Paul
Kemp, James
Kent, Tom
Leminen, Denis
Lodge, Martin
Lowis, Mark
MacBride, Jim
MacLaughlin, Liam
MacNeill, Calum
McEvoy, Finian
McGarraghy, Brian
McMichael, Russell
Moore, John
Moore, Stephen
Moreton, Anthony
Mowatt, Geoffrey
Mulhern, Jim
Mumford, Richard
Nolan, Pauric
O’Brien, Patrick S
O’Dowd, Jim
O’Tuama, Padraig
Packer, John
Raynor, Scott
Ritchie, Andrew
Robinson, Keith
Sharpley, Glenn
Simpson, Wayne
Smith, A
Smith, Mark
Smith, Neal
Smithbody, David
Stone, Cathryn
Swan, Katy
Tailby, K W
Tailer, Dennis
Tennant, Jenny
Thomson, N
Tumar, M
Wallace, Angela
Wallman, Nigel
Whealan, Richard
Wilkinson, Simon
Williams, Mark
Wood, Michael

List of tuition centers for the Institute’s courses

University of Abertay
Dr John Palfreyman FIWSc & Paul Durrant AIIWSc
(Tel: 01382 308100)

BCT
Glenn Sharpley (Tel: 01524 832005)

Buckinghamshire Chilterns University College
Barry Matthews FIWSc (Tel: 01494 522141)

Enterprise Ireland
Dr Jos Evertsen FIWSc (Tel: 00353 1 808 2635)

Isle of Wight College
Martin Wall AIWSc (Tel: 01983 526631)

Liverpool Community College
Greg Prascoe (Tel 0151 252 4865)

Newtownabbey College of F.E.
Tom Mcdadden (Tel: 01231 64331)

TRADE Technology Ltd
Susan Farlow AIWSc (Tel: 01709 720215)

Technology for Timber
Jim Coulston AIWSc (Tel: 01765 601010)

Warwicksire College & Moreton Morell College
Tom Shaw FIWSc & Erle Smith FIWSc
(Tel: 01926 319000)

ROBINIA (Robinia pseudoacacia)

In the IWS Journal vol 15 issue number 2, Winter 1999 there is a paper on the use of Robinia in Hungary.

The tree also grows widely and profusely in Italy and is used locally for stakes to support vines in a number of areas, especially areas where there is a greater risk of frost, and it has been found desirable to train the vines on quite tall frameworks.

The picture illustrates such a vineyard together with freshly pointed Robinia stakes. It was taken in the Euganei Hills west of Venice.

Robinia (false acacia), a native of North America was introduced into Europe in the 18/19th Centuries. The tree now grows strongly in much of Continental Europe but in the UK it is grown mainly as an ornamental parkland and garden tree. The wood is comparable to oak in strength and, being ring porous, the vigorous fast growing trees are particularly strong with densities as high as 860 kg/m³ (fast grown ring porous hardwoods, unlike fast grown softwoods, usually have increased strength due to the larger volume of fibres in the latewood zone). The heartwood is durable. From this brief description the value of the wood for stakes is clear.

David Woodbridge
IWSc Appointments

Maurice Holloway IWSc will continue as Director until the AGM in September after which David Woodbridge FIWSc, who is currently Deputy Director, will take over. Also after the Summer issue, Barry Mathews FIWSc will take over from David Woodbridge as Editor of the journal. Editorial work will continue to be the responsibility of David Woodbridge.

Mr Martin Wall AIVSc has taken over the Chair of the Education Committee from Dr John Brazier, however Dr Brazier will remain Chief Examiner. Mr Tom E Shaw remains as Vice Chairman.

During 1999 the Membership Committee awarded Fellowships to the following:

- Michael Buckley: American Hardwood Council Export Council
- Alan Coday: Materials Consultant under contract to Ove Arup and BRE
- Bryan Gauld, Eur Ing: University of Kingston School of Architecture and Consultant
- Dr Robert Kozak: University of British Columbia
- Dr Philip Turner: Forest Resource Optimisation Group, CSIR, Pretoria; South Africa

Subscription Rates

From 1st April 2000 the Institute subscription rates are as follows:

- Fellows: £58
- Associates: £52
- Certificated Members: £35
- Members: £52
- Ordinary Members: £30
- Retired Members (with Journal): £23
- Retired Members (without Journal): £10

CORPORATE MEMBERS

The Council of Management wish to record its thanks to those listed below for their support as Corporate Members:

ACWI Ltd
AHEC
Anglo-Norden Ltd
John Boddy Timber Ltd
BSW Timber plc
Buckinghamshire Chilterns University College
Richard Burbridge Ltd
BWPDA
Carver (Wolverhampton) Ltd
Cuprinol Ltd
Coilit
Elmia AB
Enterprise Ireland
Forest Services N. Ireland
Hickson Timber Products Ltd
Howarth Timber Group Ltd
Hunter Timber Group Ltd
James Jones & Sons Ltd
Kotka College
James Latham plc
Marlow & Co. Ltd
Meyer International plc
MBM Forest Products Ltd
Montague L. Meyer Ltd
Price & Pierce Ltd
Protim Solignum Ltd
Rentokil Ltd
Ronseal Ltd
Timber Trade Federation
Timber and Wood Products
Timbmet Ltd
TRADA
Travis Perkins plc
Willamette Europe Ltd

REGIONAL CONTACTS

For information on branch and/or regional and overseas activities, the contacts are:

Bath and the South West - Dr. Martin Ansell FIWSc (01225 826432)
Chilterns and Thames Valley - Dr. Vic Kearley AIWSc (01494 563091)
East Midlands - Tom Shaw FIWSc (01789 840605)
Ireland - Dr. Jos Evertsen FIWSc (00 3531 8082635)
Liverpool and the North West - Geoff Bagnall CMIWSc (01132 527711)
London - John Park AIWSc (01252 522545)
Scotland - Andrew Gibson AIWSc (01416 321299)
South Coast and the IOW - Martin Wall AIWSc (01983 526631)
North East - Jim Coulson AIWSc (01765 601010)
Yorkshire - Neil Ryan AIWSc (01977 671771)

Overseas

Australia - Dr. Harry Greaves (+61 3 9989 0764)
South Africa - Don Priest (013 7642352)

For details of individual and corporate membership, contact the Institute direct.

INSTITUTE of WOOD SCIENCE

Stocking Lane, Hughenden Valley, High Wycombe, Buckinghamshire HP14 4NU
Telephone: 01494 565374 Fax: 01494 565395 Email: IWSScience@aol.com
Website: http://www.iwsc.org.uk

Editor: David Woodbridge FIWSc
Designed & printed by FairPrint (High Wycombe) Ltd Tel: 01494 565381