Developments in Recycling and Re-use of Waste Rubber

Martin Forrest
MPG – Rubber Seminar
15th May 2017
Contents of Presentation

- Overview of rubber recycling
- Use of rubber crumb
- Devulcanisation of rubber
- Other recycling techniques
- Future developments
- Conclusions
Waste rubber always re-used by rubber industry
- “Reclaim” processes developed in 19th Century

Legislation has increased pressure to recycle
- Landfill Directive (1999/31/EC)
 - Ban on tyre waste in July 2006
 - 95\% target for recycling of car components
- European Parliament vote in 2017
 - Increase overall recycling rate to 70\% by 2030

Other pressures – e.g. Landfill taxes in UK
- UK recycling rates increased 7\% to \sim 50\% (1996 to 2017)
Activity over Last 20 Years

- Increased funding made available for recycling
 - Government - EU and National European (e.g. WRAP in UK)
 - Corporate initiatives (e.g. Ford)
- Most research carried out on recycling tyres
 - Regulations, ease of collection, tonnage etc
- Strong research activity in number of areas:
 - Devulcanisation processes
 - Use of rubber crumb
 - Recovery of materials, e.g. carbon black
- LCA studies for recycling tyres
- New standards and protocol’s for use of rubber crumb
Rubber Industry Data - Background

• Global annual rubber consumption
 • Tyres = ~11 million tonnes
 • GRG = ~10 million tonnes

• Global annual tyre statistics (ref: G.B. Sekhar)
 • 1.7 billion new tyres
 • 1.0 billion waste tyres

• Waste tyres in UK (0.5 million tonnes – ref: WRAP)
 • >95% recycled in total
 • 8.5% - re-treaded
 • 45.1% - reprocessed into materials and products
 • 24% - energy recovery
 • 22.4% - exported or other end-uses
Life Cycle Analysis – Recycling End of Life Tyres

• Data from “Institute for Environmental Research and Education” Report (2009)

<table>
<thead>
<tr>
<th>Recycling Route</th>
<th>Carbon Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber Crumb in Road Surfaces</td>
<td>33% less than using asphalt</td>
</tr>
<tr>
<td>Rubber Crumb in Plastic</td>
<td>25% less than using virgin plastic</td>
</tr>
<tr>
<td>Energy Recovery</td>
<td>20% less than using coal</td>
</tr>
</tbody>
</table>

Report’s Conclusion: Re-use of tyre rubber make’s substantial contribution to reducing carbon emissions
Generation of Waste – Different Industrial Processes

<table>
<thead>
<tr>
<th>Activity</th>
<th>Amount of Waste Rubber*</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Flash” produced in injection moulding</td>
<td>30 – 50%</td>
</tr>
<tr>
<td>Stamping out gaskets from cured sheet</td>
<td>20 – 40%</td>
</tr>
<tr>
<td>Extrusion processes</td>
<td>5 – 15%</td>
</tr>
<tr>
<td>All activities with a rubber factory</td>
<td>2 – 5%</td>
</tr>
</tbody>
</table>

*ref : D. Brown, Proceedings of “Recycling Rubber” Seminar
World Overview – Fate of Waste Rubber Products

<table>
<thead>
<tr>
<th>Fate of Waste Rubber Products</th>
<th>Proportion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycled into New Rubber Products</td>
<td>3 – 15%</td>
</tr>
<tr>
<td>Recycled into any Product</td>
<td>5 – 23%</td>
</tr>
<tr>
<td>Used for Energy Recovery</td>
<td>25 – 60%</td>
</tr>
<tr>
<td>Sent to Landfill or Stockpiled</td>
<td>20 – 30%</td>
</tr>
</tbody>
</table>

*ref : D. Brown, Proceedings of “Recycling Rubber” Seminar
Production of Rubber Crumb
Production of Rubber Crumb – Starting Material for Many Recycling Processes

- **Rubber crumb - types**
 - Whole tyre (possible fabric/metal contamination)
 - Tyre tread only (very low contamination - premium product)
 - Other crumb rubbers commercially available – Nitrile, EPDM, FKM etc

- **Grinding technologies**
 - Cryogenic grinding (<150 mesh)
 - Water jet grinding (<150 mesh)
 - Ambient grinding (down to ~100 mesh)
 - Specialist systems (e.g. semi-cryogenic)

- **Sieving stage - after grinding**
 - Grades crumb into particle sizes
 - e.g. 40 mesh (~400 µm)
Particle Shape – Ambient and Cryogenic Crumb

Ambient Crumb

Cryogenic Crumb
Rubber Crumb – Quality Standards

- WRAP Quality Protocol (2009)
 - Defines what point rubber fully recovered and no longer waste
 - Defines categories based on size
- BSI PAS 107:2007 (ambient crumb only)
 - Collection of raw material, e.g. tread tyre buffing's
 - Storage of raw material, manufacture and storage of final product
- General properties of crumb
 - ASTM D-5603-2008 (grades 1 to 6 - mesh size, bulk density etc)
- Particle size and particle size distribution
 - ASTM D-5644-2008 (Ro-tap sieve test method)
- Chemical properties
 - ASTM D-297-2006 (sulphur level, ash composition)
Uses of Rubber Crumb
Uses of Rubber Crumb

- Plastic products
 - Wide range of plastics investigated – PE/PP, Nylon, Polystyrene etc
 - Properties dependent on – level, type of compatibiliser etc

- Rubber products
 - Up to 50% reported if activated/small particle size used
 - EPDM compounds, Large tyres etc

- Other products
 - Wood/crumb blends - sound insulation products
 - Better than pure wood products
 - Concrete – for construction products
 - Bitumen and aggregate – road and path surfacing materials
 - Gypsum plaster - improves elastic behaviour stops cracking
 - Adhesives – improves elasticity
Rubber Crumb - Construction Products

Synthetic Roof Slate

Concrete Building Blocks
Bridleways and Footpaths Soil Improver & Turf Protector
Rubber Crumb – Adhesive and Underlay

Tile-on-Wood Adhesive

Carpet Underlay
Rubber Crumb –
Barrier Products and Large Tyres

Moulded Barrier Products – crumb and shred

Earthmover Tyre - activated crumb (to 50%)
Cryosintering using Rubber Crumb

- Cryosinter process to manufacture products
 - High pressure sintering of crumb directly into products
 - e.g. Shoe soles
 - Surface of crumb activated to improve interfacial adhesion
 - Quality of end product very dependent upon:
 - quality of crumb and effectiveness of surface treatment
 - Tensile strengths above 10 MPa are possible

- Active area for Research
 - EU funded Cryosinter project (2006 to 2008)
 - Workers at Universities (e.g. Massachusetts and Florida)
Devulcanisation of Rubber
Properties of Chemical Bonds in Sulphur-cured Rubber

Bond Energies (ref: E. Finazzi et al)

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Bond Energies (kJ mol)</th>
<th>Location in Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-S</td>
<td>270</td>
<td>Di- and polysulphidic crosslinks</td>
</tr>
<tr>
<td>C-S</td>
<td>310</td>
<td>Monosulphidic crosslinks</td>
</tr>
<tr>
<td>C-C</td>
<td>370</td>
<td>Main-chain bonds in rubber molecules</td>
</tr>
</tbody>
</table>

Elastic Constants of Bonds (ref: E. Finazzi et al)

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Elastic constant</th>
<th>Location in Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-S</td>
<td>~3</td>
<td>Di- and polysulphidic crosslinks</td>
</tr>
<tr>
<td>C-S</td>
<td>Intermediate value</td>
<td>Monosulphidic crosslinks</td>
</tr>
<tr>
<td>C-C</td>
<td>~100</td>
<td>Main-chain bonds in rubber molecules</td>
</tr>
</tbody>
</table>
1. Bond energies
 - C-S and S-S bonds lower dissociation energies than C-C bonds – break upon heating

2. Elastic constants
 - S-S bonds much “stiffer” – break upon application of shear force

3. Chemical properties
 - Can target S-S and C-S bonds using “chemical bullets”

Processes often use more than one mechanism
Ideally a commercial process should:

- Be continuous - economies of scale/higher efficiency
- Use standard processing equipment with minimal modification - lower capital investment
- Devulcanise different types of rubber
- Have no additional H&S concerns - use industry approved substances
- Produce devulcanised rubber with:
 - good processing characteristics - scorch and cure times, good rheological properties etc
 - good physical properties upon re-vulcanisation – tensile strength, elongation, compression set etc
<table>
<thead>
<tr>
<th>Technology</th>
<th>Basis of Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal*</td>
<td>Heat-induced cross-link scission</td>
</tr>
<tr>
<td>Thermal with Chemicals*</td>
<td>Targeted chemical reactions at elevated temperature</td>
</tr>
<tr>
<td>Mechanical**</td>
<td>Shear-induced cross-link scission</td>
</tr>
<tr>
<td>Mechanical with Chemicals**</td>
<td>Shear/chemical devulcanisation</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>Ultrasound energy</td>
</tr>
<tr>
<td>Microwave</td>
<td>Energy generated by microwaves</td>
</tr>
<tr>
<td>Microbiological</td>
<td>Microorganisms</td>
</tr>
</tbody>
</table>

*Not commercialised – used for research

** Either operated near ambient or heat introduced, e.g. by heated extruder
Thermo-Mechanical Processes

- Technology
 - Use shear or combination of heat and shear forces to break x-links
 - Can be carried out in intermixer (batch), extruder (continuous) or specialist equipment (e.g. HSM process)

- Advantages
 - No chemicals involved – cheaper, environmentally friendly
 - Standard processing equipment can be used – modifications possible (e.g. use of CO₂ as process aid)

- Disadvantages
 - Some chain scission can occur
 - Can work better with heat resistant rubbers, e.g. EPDM and Butyl rubber

- Commercialisation, e.g.:
 - HSM Process – now owned by Rep
 - H.S. Polymer Reprocessing – HSP Process
 - Rubber Resources
Thermo-mechanical System – Using CO2
(Zhang et al - University of Waterloo)
Thermo-mechanical System - Watson-Brown HSM Process

Stator/Rotor Parts

Complete Assembly
Thermo-mechanical Processes – With Devulcanisation Chemicals

- **Technology**
 - Combination of heat, shear and chemical reactions to break x-links
 - Intermixer (batch process) or extruder (continuous) possible
 - Can be assisted by liquid CO2 as carrier/swelling agent – e.g. in extruder

- **Advantages**
 - Flexible with good control over process
 - Lower temperatures can be used – reduces degradation
 - Some systems do not require rubber re-compounding for re-curing

- **Examples of chemicals used**
 - Thiophilic compounds – De-Link system
 - Urea compound and a Difunctional acid compound - Levgum system
 - Hexadecyclamine – sulphur cured EPDM

- **Commercialisation, e.g:**
 - De-link – developed in mid-1990’s
 - Levgum
Ultrasonic Process

- Technology
 - Developed since 1980’s at Akron University by Dr Isayev
 - Ultrasound used to selectively break x-links
 - Extrusion based systems developed
 - twin screw and single screw

- Advantages
 - Works with a range of rubber types:
 - NR, SBR, Butyl and BR
 - Well characterised

- Commercialisation
 - Akron University
 - Ultramer, Redwood Rubber, Rubberworks International - all in USA
Ultrasonic Devulcanisation Systems – provided by Dr Isayev (Akron University)
Characterisation of Devulcanised Rubber

• Chemical Analysis Methods
 • Solvent extraction to indicate degree of devulcanisation
 • Molecular weight by Gel Permeation Chromatography (GPC)
 • Determines molecular weight – shows if chain scission has occurred

• Physical Testing Methods
 • Residual x-links by equilibrium swelling – gives x-link density
 • Viscosity and Modulus – effected by residual x-links

• Processibility
 • Cure characteristics, extrusion and moulding performance etc

• Physical Properties
 • Hardness, tensile strength of final product
Uses of Devulcanised Rubber

- Manufacture of new products
 - Tyre rubber into General Rubber Goods
 - Gaskets, seals, anti-vibration mounts etc
- End-of-life product back into new product
 - Part replacement of compound
 - Tyre treads – e.g. OTR tyres
 - EPDM Weather strip
 - Industrial mats
- Re-use of in-house manufacturing scrap
 - Where tonnages allow
- Blends with thermoplastics
 - Thermoplastic rubbers
Products Manufactured from Devulcanised Rubber

Retreaded Tyres (up to 30%) GRG (up to 50%)
Other Routes for Recycling Waste Rubber
Other Routes for Recycling Waste Rubber
– Summary List

• Reclaiming Processes
 • Produce process aids and cost reduction additives
• Incineration to generate electricity
• Pyrolysis to yield products
 • Manufacture of Hydrocarbon Products/Fuel Oils
 • Recovery of Carbon Black and other fillers (e.g. silica)
• Retreading of truck tyres – form of recycling
 • Truck tyres retreaded up to six times – re-use of carcass etc
• General
 • Use in Civil Engineering Projects
 • e.g. shred as “lightweight fill” in bridges
 • Landfill engineering
 • e.g. shred for leachate collection
Incineration - Energy Recovery

- Comparative Energy Content (N. Ishizawa)

<table>
<thead>
<tr>
<th>Product</th>
<th>Energy Content (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>6,000</td>
</tr>
<tr>
<td>Tyres</td>
<td>8,000</td>
</tr>
<tr>
<td>Heavy Oil</td>
<td>9,000</td>
</tr>
</tbody>
</table>

- Geographical Data – Proportion of waste tyres incinerated
 - 70% Japan and Brazil
 - 53% in USA and 41% Europe
 - 22% Australia
 - 0% Mexico and New Zealand

- Incineration in Cement Kilns – Salts and oxides useful in cement
 - High temps (~2,000 °C) covert steel to iron oxide
 - Calcium sulphate generated (CaO in cement + SO\textsubscript{2} from breakdown of rubber)
Pyrolysis of Tyres – Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Approximate Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Gas</td>
<td>10-12</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>40-45</td>
</tr>
<tr>
<td>Carbon Black*</td>
<td>30-35</td>
</tr>
<tr>
<td>Steel Wire</td>
<td>10-15</td>
</tr>
<tr>
<td>Inorganic Material</td>
<td>>15</td>
</tr>
</tbody>
</table>

- Recovered Carbon Black - Research findings:
 - Particle size, distribution and structure different to original black
 - Around ~80% carbon due to inorganics on surface
 - Similar properties to SRF N774
Future Developments and Conclusions
Future Developments

• Pressure to recycle continue to increase
 • EU may ban landfilling of all materials by 2025
• Use of rubber crumb continue to grow
 • e.g. construction products
• Further improvements in devulcanisation processes
 • Goal to retain 100% of properties
 • Reduction in costs
• More recycling of GRG’s
• Increase in use of recovered black
Conclusions

- Range of options for recycling rubber
- Devulcanisation can be very effective
- Rubber crumb used successfully in many different products
- Good quality new products possible in many cases
- Level of rubber recycling will increase
Thank You
and Any Questions?

For further information : mforrest@smithers.com