Recycling carbon fibre: State of the art and future developments

Anthony Stevenson, Technical Manager
Outline of presentation

- Why recycle?
- Recycling methods
- The development of recycled carbon fibre products for the compounding and composites industries
- Test results, comparisons with current materials
- Examples of applications
Why Recycle

- **COST**
 - Recovery of fibres requires much less energy than production of virgin fibres

- **Security of supply**
 - Demand for virgin fibre expected to exceed supply in 2018 so primary producers may be selective when meeting orders

- **Legislation**
 - EU Landfill directive 99/31/EC
Life Cycle Analysis

- Pyrolysis consumes <10% energy needed to produce virgin carbon fibre
Carbon Fibre Demand

Global demand (kT) for carbon fibre [1]

Expected CAGR 2014-2021 = 12%

Carbon Fibre Supply

<table>
<thead>
<tr>
<th>Year</th>
<th>Nameplate capacity (kT)</th>
<th>Effective capacity (kT)</th>
<th>Expected demand (kT)</th>
<th>Spare capacity (kT)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>109</td>
<td>65.3</td>
<td>44</td>
<td>21.3</td>
<td>2</td>
</tr>
<tr>
<td>2014</td>
<td>125</td>
<td>79</td>
<td>53</td>
<td>26</td>
<td>1</td>
</tr>
</tbody>
</table>

- Forecasts vary, plant efficiency & availability can change
- Might be a problem with shortage of supply
- Majority of CF production in USA & Asia

Types of Carbon Fibre waste

- **Dry fibre waste**
 - Bobbin ends
 - Selvedge
 - Offcuts from ply cutting
 - Off-spec material

- **Cured waste**
 - Trimmings
 - Swarf
 - Off-spec material

- **Pre-preg waste**
 - Offcuts from ply cutting
 - Out of life material
 - Off-spec material

- **End of life waste**
 - Will be significant in years to come
Contamination in Carbon Fibre waste

- Glass fibre
- Metal
- Mineral fillers
- Release paper/film
- Honeycomb, foam
- Paints, surfacing films
- Foreign objects
Quantities of waste (2015)

Carbon fibre waste (tonnes) from manufacturing

Total: 24,000 tonnes
Lots of aerospace grade pre-preg offcuts

No need to worry about taking contaminated EoL

24,000 tonnes is about the difference between demand & supply predicted by ORNL for 2020
Recycling processes

- **Mechanical**
 - Regrind & reuse: thermoplastic recycling process

- **Pyrolysis: Thermal decomposition of matrix**
 - Pyrolysis followed by oxidation
 - Mixed mode
 - Choice of furnace types

- **Solvolysis: Chemical dissolution of matrix**
 - May require hazardous chemicals
 - May require elevated pressure & temperature
Solvolysis processes

- Boiling concentrated nitric acid will decompose resin
 - ISO 14127
 - Not employed commercially
- Supercritical mix of acetone/water at 320 °C, 170 bar decomposes resin fully within one hour
 - No fibre damage
 - Chemical “soup” can be distilled & value recovered
 - Risks in scale up
- Some resins designed for solvolysis (Adesso)
Inert atmosphere pyrolysis

- Waste material loaded into pressure vessel
- Vessel evacuated and/or purged with inert gas
- Heated to about 500 °C to decompose resin
 - No risk of oxidative damage so can handle thick sections
- Resin volatilizes to give “pyrolysis oil”
 - Can be distilled to recover chemicals or burnt for energy
- Some char on fibres (may require a later oxidation step)
- Batch process
Pyrolysis with oxidation

- Waste material loaded onto belt
- Heated to about 500 °C to decompose resin
 - Resin ignites & depletes oxygen
 - Char is oxidized much faster than fibres
 - Gases cleaned in afterburner
- Continuous process
- “Black Art” in atmosphere control
Fibre Properties

- Oxygen levels in furnace controlled to burn off char
 - Don’t intend to damage fibre
 - Fibre maintains stiffness but loses some strength
 - Fibre desized
- Recovered fibres are not well aligned
- Single fibre testing employed
 - Very fiddly!
 - High coefficient of variation
 - Need longish fibres for test
Fibre Mechanical Properties

- Reclaimed carbon fibres have similar mechanical properties to the original fibres (results do vary with the type of feedstock).
Fluidised bed process

- Coarsely ground waste fluidized by hot air
- Liberated fibres carried out
- Cyclone sorts fibres by mass (dust is not collected)
- Dense contaminants fall through bed
- Good for short fibres (under 25 mm)

“Developments in the fluidised bed process for fibre recovery from thermoset composites”, Pickering, S.J. et al in: 2nd Annual Composites and Advanced Materials Expo, CAMX 2015; Dallas, 26-29 October 2015
Fibre alignment

- All recovery processes yield discontinuous fibres
- Low bulk density, difficult to handle
- Intermediates:
 - Pellets
 - Papers
 - Textiles (e.g. carding)
 - Yarns/tapes
Milled Fibre: Carbiso MF

- Short fibre, MF100, mean length = 0.1 mm (MF80, 0.08 mm)
- Strength high: fibre breaks at weak points during milling
- Stiffness virtually the same as virgin fibre
- No surface coating so bonds well to thermoplastics
- Low CTE
 - Axial: -0.4 x 10^{-6} m/m/K
 - Transverse: 15 x 10^{-6} m/m/K
- Thermal conductivity = 5.4 W/m.K
- Not respirable – no diameter reduction in milling
- Working on pelletised form for easy dosing
Injection moulding

- Chopped fibres fed into side feeder of extruder
 - Fibre bridges during feeding
 - Fibre breaks during kneading
 - Fibre clumps block die
- Scale up needs more work
- Possible to make pellets for injection moulding (right)

Diagram:
- **Polymer Granulate**
- **Pre-Chopped Fibres**

Chopped extrudates ready for inj. moulding

Image:
- Black granules with a scale of 10 mm
Injection moulding: PA66

- No significant difference between virgin & rCF
- 10% carbon gives same stiffness as 30% glass

Recycled CF: ALCOM MP PA66 70x0 15100-3 CF
Prime CF: ALCOM PA66 910/1.1 CF10/20/30
Glass filled CF: ALTECH PA66 A 2030/106 NC0001-00
Injection moulding: PA66

- No significant difference between virgin & rCF
- 10% carbon approaching strength of 30% glass

Recycled CF: ALCOM MP PA66 70x0 15100-3 CF
Prime CF: ALCOM PA66 910/1.1 CF10/20/30
Glass filled CF: ALTECH PA66 A 2030/106 NC0001-00
Injection moulding

- For PA66 compounds see 21% reduction in density for the same mechanical properties
- Compound with 10% rCF is only 2% more expensive than compound with 30% glass
- Increased cost justified by weight saving
- No need to re-engineer tools
- Win-win!

Thank you to Albis for producing compounds, moulding and testing sample bars, and giving permission to report the data
Paper making processes

- In paper making fibres are dispersed in water
- Slurry discharged onto belt/wire & water removed
- e.g. process used by Technical Fibre Products to make veils
- In the Hiperdif process jets of slurry are directed at a series of plates so the fibres are aligned
- Produces aligned tape from short fibres

Non-wovens

- Fibres recovered as discontinuous fibres
- Chop to manageable size
- Card to form web
 - Carding pyrolysed (de-sized) CF is not straightforward
- Cross-lap to control thickness & gsm, or create sliver for yarn spinning
- Can blend in other fibres (thermoplastic)
ELG products

- Carbiso M
 - 100% rCF mats
 - Can be made from sized fibre (epoxy)
 - Used in thermoset moulding processes

- Carbiso TM
 - Blends of rCF with thermoplastic fibres
 - PP, PA6, PA66, PPS, PET etc.
 - Generally compression moulded

- Weights 100 - 500 gsm; widths up to 2.7 m
Mechanical properties: RTM

- Epoxy resin, 110 °C, small gap during injection
- Normalised to 35 vol% CF

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Test Direction</th>
<th>SGL Recatex Isotropic</th>
<th>SGL Recatex Oriented</th>
<th>ELG Weaving Waste</th>
<th>ELG Pyrolysed Prepreg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (MPa)</td>
<td>Cross Web</td>
<td>198</td>
<td>289</td>
<td>382</td>
<td>340</td>
</tr>
<tr>
<td>Tensile Modulus (GPa)</td>
<td>Cross Web</td>
<td>24.5</td>
<td>31.5</td>
<td>34.1</td>
<td>40.1</td>
</tr>
<tr>
<td>Tensile Strength (MPa)</td>
<td>Roll</td>
<td>164</td>
<td>123</td>
<td>215</td>
<td>168</td>
</tr>
<tr>
<td>Tensile Modulus (GPa)</td>
<td>Roll</td>
<td>19.3</td>
<td>13.1</td>
<td>18.7</td>
<td>19.3</td>
</tr>
</tbody>
</table>
Mechanical properties: pre-preg

- Epoxy pre-preg made (see schematic)
- Left to mature 24 h room temperature
- Compression moulded, hot in hot out
- 150 C, 2 MPa, 5 min
Mechanical properties: pre-preg

<table>
<thead>
<tr>
<th>Test Direction</th>
<th>longitudinal</th>
<th>transverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (MPa)</td>
<td>250</td>
<td>340</td>
</tr>
<tr>
<td>Tensile Modulus (GPa)</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>Flexural Modulus (GPa)</td>
<td>-</td>
<td>52</td>
</tr>
</tbody>
</table>

- Laminates moulded from pre-preg 10 minutes at 155 °C with 2 MPa applied pressure. Hot in hot out.
- Carbon fibre volume fraction = 35%
Hybrid non-wovens

- Carbon & thermoplastic fibres intimately mingled
 - Short flow distance for melt
- Direct moulding:
 - Die cut fabric to shape & load into mould
 - Heat to > Tm (mould may be preheated)
 - Apply pressure to consolidate material
 - Cool to below Tg
- Preconsolidated sheet
 - Preheat to around T_m
 - Load into chilled mould
 - Apply pressure to deform sheet before it freezes
Hybrid non-wovens

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>CF-PA6 Cross-plied</th>
<th>CF-PP transverse</th>
<th>CF-PP longitudinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cc</td>
<td>1.35</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>Ultimate tensile strength</td>
<td>MPa</td>
<td>227</td>
<td>204</td>
<td>159</td>
</tr>
<tr>
<td>Tensile modulus</td>
<td>GPa</td>
<td>21.7</td>
<td>15.6</td>
<td>13.5</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>MPa</td>
<td>273</td>
<td>154</td>
<td>161</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>GPa</td>
<td>17.7</td>
<td>18.0</td>
<td>18.6</td>
</tr>
</tbody>
</table>

- Tests conducted on compression moulded panels 2 mm thick
- Carbiso mats made on laboratory line 40 wt% CF
Applications: Carbiso M

iStream™ Carbon Concept

- Primary structure: steel tube design
- Secondary structure: rCF panels of Carbiso M and thermosetting resin

courtesy of Gordon Murray Design
Applications: short fibre

SMC and BMC moulding compounds used in areas where long fibres cannot conform to complex geometry or where there are exacting surface quality requirements.

Net shape manufacturing
Chopped fibres being used in several research projects investigating net shape manufacturing processes--preforming for resin transfer moulding or stamp forming applications.
Outlook

- Recycled carbon fibre can change supply/demand equation
- Security of supply with controlled quality
- Carbiso TM and Carbiso M materials being trialed by a number of automotive and aerospace Tier 1s
- Huge market for short fibre rCF in thermoplastics, (once manufacturing issues solved)
Any Questions?

Anthony Stevenson
Technical Manager
ELG Carbon Fibre
Coseley
West Midlands
WV14 8XR
+44 (0)1902 406 010
anthony.stevenson@elgcf.com
www.elgcf.com